RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Multiclass support vector machines with example-dependent costs applied to plankton biomass estimation

Autor(es) y otros:
González González, PabloAutoridad Uniovi; Álvarez, Eva; Barranquero Tolosa, JoséAutoridad Uniovi; Díez Peláez, JorgeAutoridad Uniovi; González-Quirós Fernández, Rafael; Nogueira García, Enrique; López Urrutia Lorente, Ángel; Coz Velasco, Juan José delAutoridad Uniovi
Palabra(s) clave:

Cost-sensitive learning

SVM

Fecha de publicación:
2013
Editorial:

IEEE

Versión del editor:
http://dx.doi.org/10.1109/TNNLS.2013.2271535
Citación:
IEEE Transactions on Neural Networks and Learning Systems, 24(11), p. 1901-1905 (2013); doi:10.1109/TNNLS.2013.2271535
Descripción física:
p. 1901-1905
Resumen:

In many applications, the mistakes made by an automatic classifier are not equal, they have different costs. These problems may be solved using a cost-sensitive learning approach. The main idea is not to minimize the number of errors, but the total cost produced by such mistakes. This paper presents a new multiclass costsensitive algorithm, in which each example has attached its corresponding misclassification cost. Our proposal is theoretically well-founded and is designed to optimize costsensitive loss functions. This research was motivated by a real-world problem, the biomass estimation of several plankton taxonomic groups. In this particular application, our method improves the performance of traditional multiclass classification approaches that optimize the accuracy

In many applications, the mistakes made by an automatic classifier are not equal, they have different costs. These problems may be solved using a cost-sensitive learning approach. The main idea is not to minimize the number of errors, but the total cost produced by such mistakes. This paper presents a new multiclass costsensitive algorithm, in which each example has attached its corresponding misclassification cost. Our proposal is theoretically well-founded and is designed to optimize costsensitive loss functions. This research was motivated by a real-world problem, the biomass estimation of several plankton taxonomic groups. In this particular application, our method improves the performance of traditional multiclass classification approaches that optimize the accuracy

URI:
http://hdl.handle.net/10651/24086
ISSN:
2162-237X
Identificador local:

20140988

DOI:
10.1109/TNNLS.2013.2271535
Patrocinado por:

This work was supported in part by the Ministerio de Economía y Competitividad under Grant TIN2011-23558, and FICYT under Grant IB09-059-C2

Colecciones
  • Artículos [37532]
  • Informática [872]
  • Investigaciones y Documentos OpenAIRE [8365]
Ficheros en el ítem
Thumbnail
untranslated
Postprint (248.0Kb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image