RUO Home

Repositorio Institucional de la Universidad de Oviedo

View Item 
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of RUOCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issnAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issn

My Account

LoginRegister

Statistics

View Usage Statistics

RECENTLY ADDED

Last submissions
Repository
How to publish
Resources
FAQs

Visual predictive maintenance tool based on SOM projection techniques

Author:
Díaz Blanco, IgnacioUniovi authority; Cuadrado Vega, Abel AlbertoUniovi authority; Díez González, Alberto BenjamínUniovi authority; Rodríguez Loredo, Luis; Obeso Carrera, Faustino EmilioUniovi authority; Sánchez Rodríguez, Juan Antonio
Publication date:
2003
Editorial:

EDP Sciences

Publisher version:
http://dx.doi.org/10.1051/metal:2003179
Citación:
Revue de Metallurgie. Cahiers D'Informations Techniques, 100, p. 307-315 (2003); doi:10.1051/metal:2003179
Descripción física:
p. 307-315
Abstract:

This paper presents a portable condition monitoring system named MAPREX which was developed as result of the cooperation between the University of Oviedo and Aceralia inside of a research project funded by the ECSC - Steel RTD Program. The system integrates powerful monitoring and data visualization techniques based on the Self Organizing Map (SOM) algorithm. In this paper is described in detail the system architecture and performances, visualization techniques implemented and an example displaying real data from a 6,000 kW DC motor of a hot strip mill rolling stand

This paper presents a portable condition monitoring system named MAPREX which was developed as result of the cooperation between the University of Oviedo and Aceralia inside of a research project funded by the ECSC - Steel RTD Program. The system integrates powerful monitoring and data visualization techniques based on the Self Organizing Map (SOM) algorithm. In this paper is described in detail the system architecture and performances, visualization techniques implemented and an example displaying real data from a 6,000 kW DC motor of a hot strip mill rolling stand

URI:
http://hdl.handle.net/10651/22848
ISSN:
0035-1563
DOI:
10.1051/metal:2003179
Collections
  • Artículos [37541]
  • Ingeniería Eléctrica, Electrónica, de Comunicaciones y de Sistemas [1088]
Files in this item
Thumbnail
untranslated
P307.pdf (482.5Kb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadata
Show full item record
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
The content of the Repository, unless otherwise specified, is protected with a Creative Commons license: Attribution-Non Commercial-No Derivatives 4.0 Internacional
Creative Commons Image