RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Capítulos de libros
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Capítulos de libros
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Robust solutions to job-shop scheduling problems with operators

Autor(es) y otros:
Escamilla, Joan; Rodríguez Molins, Mario; Salido, Miguel A.; Sierra Sánchez, María RitaAutoridad Uniovi; Mencía Cascallana, CarlosAutoridad Uniovi; Barber, Federico
Fecha de publicación:
2012
Editorial:

IEEE

Versión del editor:
http://dx.doi.org/10.1109/ICTAI.2012.48
Descripción física:
p. 299-306
Resumen:

The job-shop scheduling problem with operators is an extension of the classical job-shop scheduling problem where each operation has to be assisted by one operator from a limited set of them. We confront this problem with the objective of obtaining robust schedules and minimizing the make span. In this way the problem becomes more difficult but more interesting from a practical point of view. We propose to solve the problem in three steps. In the first one, the JSP relaxation (without operators) is modeled and solved using a CSOP solver with the objective of minimizing the make span. Then, the solution is modified to include operators, in this step robustness is introduced by means of a set of buffers in the operators sequences. Finally, these buffers are uniformly distributed among the operations that are not involved in a critical path. We have conducted an experimental study showing that the proposed method reaches a good trade-off between robustness and optimality

The job-shop scheduling problem with operators is an extension of the classical job-shop scheduling problem where each operation has to be assisted by one operator from a limited set of them. We confront this problem with the objective of obtaining robust schedules and minimizing the make span. In this way the problem becomes more difficult but more interesting from a practical point of view. We propose to solve the problem in three steps. In the first one, the JSP relaxation (without operators) is modeled and solved using a CSOP solver with the objective of minimizing the make span. Then, the solution is modified to include operators, in this step robustness is introduced by means of a set of buffers in the operators sequences. Finally, these buffers are uniformly distributed among the operations that are not involved in a critical path. We have conducted an experimental study showing that the proposed method reaches a good trade-off between robustness and optimality

URI:
http://hdl.handle.net/10651/18729
ISBN:
978-1-4799-0227-9
ISSN:
1063-6730
Identificador local:

20130481

DOI:
10.1109/ICTAI.2012.48
Patrocinado por:

This research has been supported by the Spanish Government under research project MEC-FEDER TIN2010-20976- C02-01 and TIN2010-20976-C02-02, by the fellowship program FPU (AP2010-4405) and by the Principality of Asturias under grant FICYT-BP09105

Colecciones
  • Capítulos de libros [6507]
  • Informática [872]
Ficheros en el ítem
Thumbnail
untranslated
Escamilla2012_postprint.pdf (240.2Kb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image