RUO Home

Repositorio Institucional de la Universidad de Oviedo

View Item 
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Tesis
  • View Item
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Tesis
  • View Item
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of RUOCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issnAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issn

My Account

LoginRegister

Statistics

View Usage Statistics

RECENTLY ADDED

Last submissions
Repository
How to publish
Resources
FAQs
Las tesis leídas en la Universidad de Oviedo se pueden consultar en el Campus de El Milán previa solicitud por correo electrónico: buotesis@uniovi.es

Estimación de la información mutua en problemas con datos imprecisos

Author:
Suárez Fernández, María del RosarioUniovi authority
Director:
Sánchez Ramos, LucianoUniovi authority
Centro/Departamento/Otros:
Informática, Departamento deUniovi authority
Publication date:
2007-04-23
Descripción física:
208 p.
Abstract:

El objetivo de esta memoria es presentar una nueva definición de información mutua basada en la definición clásica. Esta nueva definición se aplicará al problema concreto de la optimización de particiones borrosas de variables aleatorias borrosas. Se demuestra además, que en la mayor parte de los casos, estas particiones optimizadas ofrecen un error de clasificación basados en reglas borrosas. Asimismo se pretende ampliar aún más el campo de estudio, abarcando el tratamiento de datos imprecisos y demostrando que esta definición es aplicable a problemas de este tipo. Se realiza un trabajo de investigación que pasa por la búsqueda de información acerca del diseño de particiones borrosas, así como diferentes formas de utilizar la información mutua como medida de optimización, por otros autores. Se muestra el método propuesto por nosotros, así como su aplicación para la optimización de particiones borrosas tanto con datos precisos como con datos imprecisos. Seguidamente se realizará un estudio de algoritmos de clasificación existentes en la literatura, necesarios para llevar a cabo nuestros experimentos. Y finalmente se implementan los algoritmos genéticos tanto para la optimización con datos precisos como con datos imprecisos.

El objetivo de esta memoria es presentar una nueva definición de información mutua basada en la definición clásica. Esta nueva definición se aplicará al problema concreto de la optimización de particiones borrosas de variables aleatorias borrosas. Se demuestra además, que en la mayor parte de los casos, estas particiones optimizadas ofrecen un error de clasificación basados en reglas borrosas. Asimismo se pretende ampliar aún más el campo de estudio, abarcando el tratamiento de datos imprecisos y demostrando que esta definición es aplicable a problemas de este tipo. Se realiza un trabajo de investigación que pasa por la búsqueda de información acerca del diseño de particiones borrosas, así como diferentes formas de utilizar la información mutua como medida de optimización, por otros autores. Se muestra el método propuesto por nosotros, así como su aplicación para la optimización de particiones borrosas tanto con datos precisos como con datos imprecisos. Seguidamente se realizará un estudio de algoritmos de clasificación existentes en la literatura, necesarios para llevar a cabo nuestros experimentos. Y finalmente se implementan los algoritmos genéticos tanto para la optimización con datos precisos como con datos imprecisos.

URI:
http://hdl.handle.net/10651/15054
Other identifiers:
https://www.educacion.gob.es/teseo/mostrarRef.do?ref=409680
Local Notes:

Tesis 2007-153

Collections
  • Tesis [7677]
Files in this item
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadata
Show full item record
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
The content of the Repository, unless otherwise specified, is protected with a Creative Commons license: Attribution-Non Commercial-No Derivatives 4.0 Internacional
Creative Commons Image