RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Tesis
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Tesis
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs
Las tesis leídas en la Universidad de Oviedo se pueden consultar en el Campus de El Milán previa solicitud por correo electrónico: buotesis@uniovi.es

Descomposición de la transitividad en estructuras de preferencia aditiva

Autor(es) y otros:
Díaz Vázquez, SusanaAutoridad Uniovi
Director(es):
Montes Rodríguez, SusanaAutoridad Uniovi; Baets, Bernard de
Centro/Departamento/Otros:
Estadística e Investigación Operativa y Didáctica de la Matemática, Departamento deAutoridad Uniovi
Fecha de publicación:
2004-11-12
Descripción física:
198 p.
Resumen:

En esta tesis se ha llevado a cabo un estudio de la propagación de la transitividad dentro de las estructuras de preferencia aditiva, por tratarse éste de un concepto fundamental en la teoría de la decisión multicriterio. En el caso clásico se sabe que la transitividad de la relación de preferencia extendida asociada a una estructura de preferencia se puede caracterizar por las transitividades de la relación de preferencia estricta y la relación de indiferencia. Hemos introducido una definición de transitividad que generaliza la que habitualmente se emplea en la literatura y hemos buscado los tipos más fuertes de transitividad que se pueden asegurar para las relaciones de preferencia estricta e indiferencia suponiendo que la relación de preferencia extendida satisface distintos tipos de transitividad. Además hemos probado que nuestros resultados proporcionan realmente los tipos más fuertes de transitividad posible. Puesto que la influencia de la hipótesis de completitud está clara ya en el caso clásico, también hemos estudiado la influencia de esta propiedad en la descomposición de la transitividad en ambiente difuso. Hemos estudiado las implicaciones más fuertes posibles tanto en ausencia de completitud como bajo completitud débil. Por otra parte, hemos demostrado que la transitividad de la relación de preferencia extendida no se deduce ni siquiera de los tipos más fuertes de transitividad que se pueden suponer para las relaciones de preferencia estricta e indiferencia, de modo que la caracterización conocida en el caso clásico no admite una traslación directa al caso borroso.

En esta tesis se ha llevado a cabo un estudio de la propagación de la transitividad dentro de las estructuras de preferencia aditiva, por tratarse éste de un concepto fundamental en la teoría de la decisión multicriterio. En el caso clásico se sabe que la transitividad de la relación de preferencia extendida asociada a una estructura de preferencia se puede caracterizar por las transitividades de la relación de preferencia estricta y la relación de indiferencia. Hemos introducido una definición de transitividad que generaliza la que habitualmente se emplea en la literatura y hemos buscado los tipos más fuertes de transitividad que se pueden asegurar para las relaciones de preferencia estricta e indiferencia suponiendo que la relación de preferencia extendida satisface distintos tipos de transitividad. Además hemos probado que nuestros resultados proporcionan realmente los tipos más fuertes de transitividad posible. Puesto que la influencia de la hipótesis de completitud está clara ya en el caso clásico, también hemos estudiado la influencia de esta propiedad en la descomposición de la transitividad en ambiente difuso. Hemos estudiado las implicaciones más fuertes posibles tanto en ausencia de completitud como bajo completitud débil. Por otra parte, hemos demostrado que la transitividad de la relación de preferencia extendida no se deduce ni siquiera de los tipos más fuertes de transitividad que se pueden suponer para las relaciones de preferencia estricta e indiferencia, de modo que la caracterización conocida en el caso clásico no admite una traslación directa al caso borroso.

URI:
http://hdl.handle.net/10651/12777
Otros identificadores:
https://www.educacion.gob.es/teseo/mostrarRef.do?ref=377118
Tesis Publicada:
http://absysweb.cpd.uniovi.es/cgi-bin/abnetopac?TITN=1092347
Notas Locales:

Tesis 2004-043

Colecciones
  • Tesis [7669]
Ficheros en el ítem
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image