RUO Home

Repositorio Institucional de la Universidad de Oviedo

View Item 
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Capítulos de libros
  • View Item
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Capítulos de libros
  • View Item
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of RUOCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issnAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issn

My Account

LoginRegister

Statistics

View Usage Statistics

RECENTLY ADDED

Last submissions
Repository
How to publish
Resources
FAQs

Soft margin trees

Author:
Díez Peláez, JorgeUniovi authority; Coz Velasco, Juan José delUniovi authority; Bahamonde Rionda, AntonioUniovi authority; Luaces Rodríguez, ÓscarUniovi authority
Publication date:
2009
Editorial:

Springer

Publisher version:
http://dx.doi.org/10.1007/978-3-642-04180-8_37
Descripción física:
p. 302-314
Abstract:

From a multi-class learning task, in addition to a classi er, it is possible to infer some useful knowledge about the relationship between the classes involved. In this paper we propose a method to learn a hierarchical clustering of the set of classes. The usefulness of such clusterings has been exploited in bio-medical applications to nd out relations between diseases or populations of animals. The method proposed here de nes a distance between classes based on the margin maximization principle, and then builds the hierarchy using a linkage procedure. Moreover, to quantify the goodness of the hierarchies we de ne a measure. Finally, we present a set of experiments comparing the scores achieved by our approach with other methods

From a multi-class learning task, in addition to a classi er, it is possible to infer some useful knowledge about the relationship between the classes involved. In this paper we propose a method to learn a hierarchical clustering of the set of classes. The usefulness of such clusterings has been exploited in bio-medical applications to nd out relations between diseases or populations of animals. The method proposed here de nes a distance between classes based on the margin maximization principle, and then builds the hierarchy using a linkage procedure. Moreover, to quantify the goodness of the hierarchies we de ne a measure. Finally, we present a set of experiments comparing the scores achieved by our approach with other methods

Description:

European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2009; Bled; 7 September 2009 through 11 September 2009

URI:
http://hdl.handle.net/10651/12379
ISBN:
978-3-642-04179-2; 978-3-642-04180-8
Identificador local:

20090165

DOI:
10.1007/978-3-642-04180-8_37
Patrocinado por:

The research reported here is supported in part under grant TIN2008-06247 from the MICINN (Ministerio de Ciencia e Innovación of Spain)

Id. Proyecto:

MICIIN/TIN2008-06247

Collections
  • Capítulos de libros [5391]
  • Informática [618]
  • Investigaciones y Documentos OpenAIRE [6174]
Files in this item
Thumbnail
untranslated
Postprint (225.9Kb)
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadata
Show full item record
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
The content of the Repository, unless otherwise specified, is protected with a Creative Commons license: Attribution-Non Commercial-No Derivatives 4.0 Internacional
Creative Commons Image