RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Clustering people according to their preference criteria

Autor(es) y otros:
Díez Peláez, JorgeAutoridad Uniovi; Coz Velasco, Juan José delAutoridad Uniovi; Luaces Rodríguez, ÓscarAutoridad Uniovi; Bahamonde Rionda, AntonioAutoridad Uniovi
Palabra(s) clave:

Learning preferences

Clustering

Adaptive assistants

Analysis of sensory data

Market segmentation

Fecha de publicación:
2008
Editorial:

Elsevier

Versión del editor:
http://dx.doi.org/10.1016/j.eswa.2006.12.005
Citación:
Expert Systems with Applications, 34(2), p. 1274-1284 (2008); doi:10.1016/j.eswa.2006.12.005
Descripción física:
p. 1274-1284
Resumen:

Learning preferences is a useful task in application fields such as collaborative filtering, information retrieval, adaptive assistants or analysis of sensory data provided by panels. SVMs, using preference judgments, can induce ranking functions that map objects into real numbers, in such a way that more preferable objects achieve higher values. In this paper we present a new algorithm to build clusters of people with closely related tastes, and hence people whose preference judgment sets can be merged in order to learn more reliable ranking functions. In some application fields, these clusters can be seen as market segments that demand different kinds of products. The method proposed starts representing people’s preferences in a metric space, where it is possible to define a kernel based similarity function; finally a clustering algorithm discovers significant groups with homogeneous tastes. The key point of our proposal is to use the ranking functions induced from the preference judgments of each person; we will show that those functions codify the criteria used by each person to decide her preferences. To illustrate the performance of our approach, we present two experimental cases. The first one deals with the collaborative filtering database EachMovie. The second database describes a real case of consumers of beef meat

Learning preferences is a useful task in application fields such as collaborative filtering, information retrieval, adaptive assistants or analysis of sensory data provided by panels. SVMs, using preference judgments, can induce ranking functions that map objects into real numbers, in such a way that more preferable objects achieve higher values. In this paper we present a new algorithm to build clusters of people with closely related tastes, and hence people whose preference judgment sets can be merged in order to learn more reliable ranking functions. In some application fields, these clusters can be seen as market segments that demand different kinds of products. The method proposed starts representing people’s preferences in a metric space, where it is possible to define a kernel based similarity function; finally a clustering algorithm discovers significant groups with homogeneous tastes. The key point of our proposal is to use the ranking functions induced from the preference judgments of each person; we will show that those functions codify the criteria used by each person to decide her preferences. To illustrate the performance of our approach, we present two experimental cases. The first one deals with the collaborative filtering database EachMovie. The second database describes a real case of consumers of beef meat

URI:
http://hdl.handle.net/10651/10769
ISSN:
0957-4174
Identificador local:

1023

DOI:
10.1016/j.eswa.2006.12.005
Colecciones
  • Artículos [37541]
  • Informática [875]
Ficheros en el ítem
Thumbnail
untranslated
Clustering_people.pdf (232.9Kb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image