RUO Home

Repositorio Institucional de la Universidad de Oviedo

View Item 
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of RUOCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issnAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issn

My Account

LoginRegister

Statistics

View Usage Statistics

RECENTLY ADDED

Last submissions
Repository
How to publish
Resources
FAQs

Graphical feature selection for multilabel classification tasks

Author:
Lastra Madrid, Gerardo JesúsUniovi authority; Luaces Rodríguez, ÓscarUniovi authority; Quevedo Pérez, José RamónUniovi authority; Bahamonde Rionda, AntonioUniovi authority
Publication date:
2011
Editorial:

Springer

Publisher version:
http://dx.doi.org/10.1007/978-3-642-24800-9_24
Citación:
Lecture Notes in Computer Science, 7014, p. 246-257 (2011); doi:10.1007/978-3-642-24800-9_24
Descripción física:
p. 246-257
Abstract:

Multilabel was introduced as an extension of multi-class classification to cope with complex learning tasks in different application fields as text categorization, video o music tagging or bio-medical labeling of gene functions or diseases. The aim is to predict a set of classes (called labels in this context) instead of a single one. In this paper we deal with the problem of feature selection in multilabel classification. We use a graphical model to represent the relationships among labels and features. The topology of the graph can be characterized in terms of relevance in the sense used in feature selection tasks. In this framework, we compare two strategies implemented with different multilabel learners. The strategy that considers simultaneously the set of all labels outperforms the method that considers each label separately

Multilabel was introduced as an extension of multi-class classification to cope with complex learning tasks in different application fields as text categorization, video o music tagging or bio-medical labeling of gene functions or diseases. The aim is to predict a set of classes (called labels in this context) instead of a single one. In this paper we deal with the problem of feature selection in multilabel classification. We use a graphical model to represent the relationships among labels and features. The topology of the graph can be characterized in terms of relevance in the sense used in feature selection tasks. In this framework, we compare two strategies implemented with different multilabel learners. The strategy that considers simultaneously the set of all labels outperforms the method that considers each label separately

URI:
http://hdl.handle.net/10651/9949
ISSN:
0302-9743
Identificador local:

20111638

DOI:
10.1007/978-3-642-24800-9_24
Collections
  • Artículos [37540]
  • Informática [875]
Files in this item
Thumbnail
untranslated
grafeatselec_ml.pdf (267.9Kb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadata
Show full item record
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
The content of the Repository, unless otherwise specified, is protected with a Creative Commons license: Attribution-Non Commercial-No Derivatives 4.0 Internacional
Creative Commons Image