RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Graphical feature selection for multilabel classification tasks

Autor(es) y otros:
Lastra Madrid, Gerardo JesúsAutoridad Uniovi; Luaces Rodríguez, ÓscarAutoridad Uniovi; Quevedo Pérez, José RamónAutoridad Uniovi; Bahamonde Rionda, AntonioAutoridad Uniovi
Fecha de publicación:
2011
Editorial:

Springer

Versión del editor:
http://dx.doi.org/10.1007/978-3-642-24800-9_24
Citación:
Lecture Notes in Computer Science, 7014, p. 246-257 (2011); doi:10.1007/978-3-642-24800-9_24
Descripción física:
p. 246-257
Resumen:

Multilabel was introduced as an extension of multi-class classification to cope with complex learning tasks in different application fields as text categorization, video o music tagging or bio-medical labeling of gene functions or diseases. The aim is to predict a set of classes (called labels in this context) instead of a single one. In this paper we deal with the problem of feature selection in multilabel classification. We use a graphical model to represent the relationships among labels and features. The topology of the graph can be characterized in terms of relevance in the sense used in feature selection tasks. In this framework, we compare two strategies implemented with different multilabel learners. The strategy that considers simultaneously the set of all labels outperforms the method that considers each label separately

Multilabel was introduced as an extension of multi-class classification to cope with complex learning tasks in different application fields as text categorization, video o music tagging or bio-medical labeling of gene functions or diseases. The aim is to predict a set of classes (called labels in this context) instead of a single one. In this paper we deal with the problem of feature selection in multilabel classification. We use a graphical model to represent the relationships among labels and features. The topology of the graph can be characterized in terms of relevance in the sense used in feature selection tasks. In this framework, we compare two strategies implemented with different multilabel learners. The strategy that considers simultaneously the set of all labels outperforms the method that considers each label separately

URI:
http://hdl.handle.net/10651/9949
ISSN:
0302-9743
Identificador local:

20111638

DOI:
10.1007/978-3-642-24800-9_24
Colecciones
  • Artículos [37548]
  • Informática [875]
Ficheros en el ítem
Thumbnail
untranslated
grafeatselec_ml.pdf (267.9Kb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image