RUO Home

Repositorio Institucional de la Universidad de Oviedo

View Item 
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of RUOCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issnAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issn

My Account

LoginRegister

Statistics

View Usage Statistics

RECENTLY ADDED

Last submissions
Repository
How to publish
Resources
FAQs

A new approach of Romero’s extended lexicographic goal programming: fuzzy extended lexicographic goal programming

Author:
Arenas Parra, María del MarUniovi authority; Bilbao Terol, Amelia MaríaUniovi authority; Pérez Gladish, Blanca MaríaUniovi authority; Rodríguez Uría, María VictoriaUniovi authority
Subject:

Interval Goal Programming

Extended Lexicographic Goal Programming

Publication date:
2010
Publisher version:
http://dx.doi.org/10.1007/s00500-009-0533-y
Citación:
Soft Computing, 14(11), p. 1217-1226 (2010); doi:10.1007/s00500-009-0533-y
Descripción física:
p. 1217-1226
Abstract:

Goal programming (GP) is perhaps one of the most widely used approaches in the field of multicriteria decision making. The major advantage of the GP model is its great flexibility which enables the decision maker to easily incorporate numerous variations on constraints and goals. Romero provides a general structure, extended lexicographic goal programming (ELGP) for GP and some multiobjective programming approaches. In this work, we propose the extension of this unifying framework to fuzzy multiobjective programming. Our extension is carried out by several methodologies developed by the authors in the fuzzy GP approach. An interval GP model has been constructed where the feasible set has been defined by means of a relationship between fuzzy numbers. We will apply this model to our fuzzy extended lexicographic goal programming (FELGP). The FELGP is a general primary structure with the same advantages as Romero’s ELGP and moreover it has the capacity of working with imprecise information. An example is given in order to illustrate the proposed method.

Goal programming (GP) is perhaps one of the most widely used approaches in the field of multicriteria decision making. The major advantage of the GP model is its great flexibility which enables the decision maker to easily incorporate numerous variations on constraints and goals. Romero provides a general structure, extended lexicographic goal programming (ELGP) for GP and some multiobjective programming approaches. In this work, we propose the extension of this unifying framework to fuzzy multiobjective programming. Our extension is carried out by several methodologies developed by the authors in the fuzzy GP approach. An interval GP model has been constructed where the feasible set has been defined by means of a relationship between fuzzy numbers. We will apply this model to our fuzzy extended lexicographic goal programming (FELGP). The FELGP is a general primary structure with the same advantages as Romero’s ELGP and moreover it has the capacity of working with imprecise information. An example is given in order to illustrate the proposed method.

URI:
http://hdl.handle.net/10651/8015
ISSN:
2040-1078; 2040-106X
DOI:
10.1007/s00500-009-0533-y
Patrocinado por:

Financial support from the Spanish Ministry of Education, project MTM2007-67634

Id. Proyecto:

Ministerio de Educación/MTM2007-67634.

Collections
  • Artículos [32097]
Files in this item
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadata
Show full item record
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
The content of the Repository, unless otherwise specified, is protected with a Creative Commons license: Attribution-Non Commercial-No Derivatives 4.0 Internacional
Creative Commons Image