RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Automated test data generation using a scatter search approach

Autor(es) y otros:
Blanco Aguirre, RaquelAutoridad Uniovi; Tuya González, Pablo JavierAutoridad Uniovi; Díaz Fernández, Belarmino AdensoAutoridad Uniovi
Palabra(s) clave:

Software testing

Automatic test case generation

Branch coverage

Scatter search

Fecha de publicación:
2009
Editorial:

Elsevier

Versión del editor:
http://dx.doi.org/10.1016/j.infsof.2008.11.001
Citación:
Information and Software Technology, 51(4), p. 708-720 (2009); doi:10.1016/j.infsof.2008.11.001
Descripción física:
p. 708-720
Resumen:

The techniques for the automatic generation of test cases try to efficiently find a small set of cases that allow a given adequacy criterion to be fulfilled, thus contributing to a reduction in the cost of software testing. In this paper we present and analyze two versions of an approach based on the Scatter Search metaheuristic technique for the automatic generation of software test cases using a branch coverage adequacy criterion. The first test case generator, called TCSS, uses a diversity property to extend the search of test cases to all branches of the program under test in order to generate test cases that cover these. The second, called TCSS-LS, is an extension of the previous test case generator which combines the diversity property with a local search method that allows the intensification of the search for test cases that cover the difficult branches. We present the results obtained by our generators and carry out a detailed comparison with many other generators, showing a good performance of our approach

The techniques for the automatic generation of test cases try to efficiently find a small set of cases that allow a given adequacy criterion to be fulfilled, thus contributing to a reduction in the cost of software testing. In this paper we present and analyze two versions of an approach based on the Scatter Search metaheuristic technique for the automatic generation of software test cases using a branch coverage adequacy criterion. The first test case generator, called TCSS, uses a diversity property to extend the search of test cases to all branches of the program under test in order to generate test cases that cover these. The second, called TCSS-LS, is an extension of the previous test case generator which combines the diversity property with a local search method that allows the intensification of the search for test cases that cover the difficult branches. We present the results obtained by our generators and carry out a detailed comparison with many other generators, showing a good performance of our approach

URI:
http://hdl.handle.net/10651/7964
ISSN:
0950-5849
Identificador local:

20090685

DOI:
10.1016/j.infsof.2008.11.001
Colecciones
  • Artículos [37538]
  • Informática [875]
Ficheros en el ítem
Thumbnail
untranslated
ist-2009-scattersearch.pdf (1.415Mb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image