RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Prediction Model for Pollutants with Onboard Diagnostic Sensors in Vehicles

Autor(es) y otros:
Maldonado, Bryce; Bennabi, Malik; García Díaz, VicenteAutoridad Uniovi; González García, CristianAutoridad Uniovi; Núñez Valdéz, Edward RolandoAutoridad Uniovi
Palabra(s) clave:

Sensors

Vehicles

Fecha de publicación:
2018-06-18
Versión del editor:
https://doi.org/10.30991/IJMLNCE.2018v02i02.002
Citación:
International Journal of Machine Learning and Networked Collaborative Engineering, 2(2), p. 48–59 (2018); doi:10.30991/IJMLNCE.2018v02i02.002
Descripción física:
p. 48–59
Resumen:

In this work, a prediction model is developed to illustrate the relationship between the internal parameters of a vehicle and its emissions. Vehicles emit various hazardous pollutants and understanding the influence of in-vehicle parameters is key to reducing their environmental impact. The values of the internal parameters were collected through the On-Board Diagnostics port, while the values of the emissions were measured from the exhaust pipe using Arduino sensors. The observed values were then matched based on the timestamps received from both sources and fit with both linear and polynomial regressions to accurately model the relationship between the internal parameters and pollutants. These models can then be used to estimate vehicle emissions based on the in- vehicle parameters, including vehicle speed, relative throttle position, and engine revolutions per minute. A wide majority of the relationships between various in- vehicle parameters and emissions show no observable correlation. There are observable correlations between carbon dioxide emissions and vehicle speed, as well as carbon dioxide emissions and engine revolutions per minute. These relationships were modelled using linear and polynomial regression with a resulting adjusted R-squared value of approximately 0.1

In this work, a prediction model is developed to illustrate the relationship between the internal parameters of a vehicle and its emissions. Vehicles emit various hazardous pollutants and understanding the influence of in-vehicle parameters is key to reducing their environmental impact. The values of the internal parameters were collected through the On-Board Diagnostics port, while the values of the emissions were measured from the exhaust pipe using Arduino sensors. The observed values were then matched based on the timestamps received from both sources and fit with both linear and polynomial regressions to accurately model the relationship between the internal parameters and pollutants. These models can then be used to estimate vehicle emissions based on the in- vehicle parameters, including vehicle speed, relative throttle position, and engine revolutions per minute. A wide majority of the relationships between various in- vehicle parameters and emissions show no observable correlation. There are observable correlations between carbon dioxide emissions and vehicle speed, as well as carbon dioxide emissions and engine revolutions per minute. These relationships were modelled using linear and polynomial regression with a resulting adjusted R-squared value of approximately 0.1

URI:
https://hdl.handle.net/10651/77972
ISSN:
2581-3242
DOI:
10.30991/IJMLNCE.2018v02i02.002
Colecciones
  • Artículos [37540]
  • Informática [875]
Ficheros en el ítem
Thumbnail
untranslated
Versión de la editorial (1.004Mb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image