RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Speciation and isotope pattern deconvolution for inductively coupled plasma-mass spectrometry quantitative studies of mineral metabolism and supplementation

Autor(es) y otros:
Sanz Medel, AlfredoAutoridad Uniovi; Fernández Sánchez, María LuisaAutoridad Uniovi; González Iglesias, HéctorAutoridad Uniovi; López Sastre, José BlasAutoridad Uniovi
Palabra(s) clave:

Endogenous and Exogenous Selenium; Hplc-Icp-Ms; Icp-Ms; Isotope Pattern Deconvolution; Selenium Speciation; Stable Isotopes.

Fecha de publicación:
2010
Versión del editor:
http://dx.doi.org/10.1351/PAC-CON-09-05-07
Citación:
Pure and Applied Chemistry, 82(2), p. 447-460 (2010); doi:10.1351/PAC-CON-09-05-07
Descripción física:
p. 447-460
Resumen:

Human breast milk can be considered as “ideal” food for the correct development of newborn babies and, for those that are not breast-fed, formula milk has to be used instead. Ideally, the composition of such formula milk preparations should closely resemble that of maternal human milk. Considerable differences between both in the total content of trace elements such as Fe, Cu, Se, Zn, and I and in their chemical form in both milk types have been demonstrated. Speciation analysis in milk whey was carried out first by high-performance liquid chromatography (HPLC) with inductively coupled plasma-mass spectrometry (ICP-MS) elemental detection and showed that the observed element distribution patterns were very different in the investigated human and formula milks. Using complementary molecular mass techniques (i.e., MALDI-TOF), the identity and chemical characterization of some biomolecules (e.g., protein) with which metals are associated in each fraction was also established (by a typical heteroatom-tagged proteomics protocol). Attempts to assess the nutritional value of elemental supplements in formula milk with the aid of quantitative chemical speciation, using stable isotopes in combination with ICP-MS and isotope pattern deconvolution (IPD), proved to be successful to differentiate and quantify endogenous (natural) and exogenous (supplemented) Se or Fe trace levels. In particular, the application of such ICP-MS based techniques to study Se bioavailability from formula milk and metabolism in Se-supplemented lactating rats is discussed in detail. Quantification of selenospecies of endogenous (natural) and exogenous (supplement) Se in rat’s urine is demonstrated and relevant information on possible Se biotransformations and its final catabolism from such results is discussed.

Human breast milk can be considered as “ideal” food for the correct development of newborn babies and, for those that are not breast-fed, formula milk has to be used instead. Ideally, the composition of such formula milk preparations should closely resemble that of maternal human milk. Considerable differences between both in the total content of trace elements such as Fe, Cu, Se, Zn, and I and in their chemical form in both milk types have been demonstrated. Speciation analysis in milk whey was carried out first by high-performance liquid chromatography (HPLC) with inductively coupled plasma-mass spectrometry (ICP-MS) elemental detection and showed that the observed element distribution patterns were very different in the investigated human and formula milks. Using complementary molecular mass techniques (i.e., MALDI-TOF), the identity and chemical characterization of some biomolecules (e.g., protein) with which metals are associated in each fraction was also established (by a typical heteroatom-tagged proteomics protocol). Attempts to assess the nutritional value of elemental supplements in formula milk with the aid of quantitative chemical speciation, using stable isotopes in combination with ICP-MS and isotope pattern deconvolution (IPD), proved to be successful to differentiate and quantify endogenous (natural) and exogenous (supplemented) Se or Fe trace levels. In particular, the application of such ICP-MS based techniques to study Se bioavailability from formula milk and metabolism in Se-supplemented lactating rats is discussed in detail. Quantification of selenospecies of endogenous (natural) and exogenous (supplement) Se in rat’s urine is demonstrated and relevant information on possible Se biotransformations and its final catabolism from such results is discussed.

URI:
http://hdl.handle.net/10651/7772
ISSN:
1657-9267
Identificador local:

20100711

DOI:
10.1351/PAC-CON-09-05-07
Colecciones
  • Artículos [37532]
Ficheros en el ítem
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image