Mostrar el registro sencillo del ítem

Software System Testing Assisted by Large Language Models: An Exploratory Study

dc.contributor.authorAugusto Alonso, Cristian 
dc.contributor.authorMorán Barbón, Jesús 
dc.contributor.authorBertolino, Antonia
dc.contributor.authorRiva Álvarez, Claudio A. de la 
dc.contributor.authorTuya González, Pablo Javier 
dc.date.accessioned2025-01-29T06:52:38Z
dc.date.available2025-01-29T06:52:38Z
dc.date.issued2025-01-25
dc.identifier.citationAugusto, C., Morán, J., Bertolino, A., de la Riva, C., & Tuya, J. (2025). Software system testing assisted by large language models: An exploratory study. En H. D. Menéndez, G. Bello-Orgaz, P. Barnard, J. R. Bautista, A. Farahi, S. Dash, D. Han, S. Fortz, & V. Rodriguez-Fernandez (Eds.), Testing software and systems: 36th IFIP WG 6.1 International Conference, ICTSS 2024, London, UK, October 30 – November 1, 2024, Proceedings (Lecture Notes in Computer Science, vol. 15383, cap. 17). Springer.spa
dc.identifier.isbn978-3-031-80888-3
dc.identifier.urihttps://hdl.handle.net/10651/76363
dc.description.abstractLarge language models (LLMs) based on transformer architecture have revolutionized natural language processing (NLP), demonstrating excellent capabilities in understanding and generating human-like text. In Software Engineering, LLMs have been applied in code generation, documentation, and report writing tasks, to support the developer and reduce the amount of manual work. In Software Testing, one of the cornerstones of Software Engineering, LLMs have been explored for generating test code, test inputs, automating the oracle process or generating test scenarios. However, their application to high-level testing stages such as system testing, in which a deep knowledge of the business and the technological stack is needed, remains largely unexplored. This paper presents an exploratory study about how LLMs can support system test development. Given that LLM performance depends on input data quality, the study focuses on how to query general purpose LLMs to first obtain test scenarios and then derive test cases from them. The study evaluates two popular LLMs (GPT-4o and GPT- 4o-mini), using as a benchmark a European project demonstrator. The study compares two different prompt strategies and employs well-established prompt patterns, showing promising results as well as room for improvement in the application of LLMs to support system testing.spa
dc.description.sponsorshipThis work was supported in part by the project PID2022-137646OB-C32 under Grant MCIN/ AEI/10.13039/501100011033/FEDER, UE, and in part by the project MASE RDS-PTR_22_24_P2.1 Cybersecurity (Italy).spa
dc.format.extentp. 239-255spa
dc.language.isoengspa
dc.publisherSpringerspa
dc.relation.ispartofTesting Software and Systemsspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectSoftware Testingspa
dc.subjectE2E Testingspa
dc.subjectLLMsspa
dc.subjectLarge Language Modelsspa
dc.subjectSoftware Engineeringspa
dc.subjectEnd-to-End Testingspa
dc.subjectPruebas de Sistemaspa
dc.subjectIngeniería del Softwarespa
dc.subjectTestingspa
dc.subjectModelos de lenguajespa
dc.titleSoftware System Testing Assisted by Large Language Models: An Exploratory Studyspa
dc.typeconference outputspa
dc.identifier.doi10.1007/978-3-031-80889-0_17
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-137646OB-C32/ES/ASEGURAMIENTO TEMPRANO DE LA CALIDAD EN ENTORNOS NOVEDOSOS DE PRODUCCION DE SOFTWARE/ spa
dc.relation.projectIDMASE RDS-PTR_22_24_P2.1spa
dc.rights.accessRightsopen accessspa
dc.type.hasVersionAMspa


Ficheros en el ítem

untranslated
untranslated

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Este ítem está sujeto a una licencia Creative Commons