Mostrar el registro sencillo del ítem

Transparent Text-Based Item Recommendation: Introducing TRecX

dc.contributor.authorPérez Núñez, Pablo 
dc.contributor.authorDíez Peláez, Jorge 
dc.contributor.authorBahamonde Rionda, Antonio 
dc.contributor.authorLuaces Rodríguez, Óscar 
dc.date.accessioned2025-01-24T07:02:28Z
dc.date.available2025-01-24T07:02:28Z
dc.date.issued2023-10-04
dc.identifier.isbn979-8-3503-3702-0
dc.identifier.urihttps://hdl.handle.net/10651/76319
dc.descriptionIEEE International Conference on Systems, Man, and Cybernetics (SMC) (2023. Oahu, Hawaii, USA)
dc.description.abstractRecommender systems have proven their usefulness both for companies and customers. The former increase their sales and the latter get a more satisfying shopping experience. These systems can benefit from the advent of explainable artificial intelligence since a well-explained recommendation will be more convincing and may broaden the customer’s purchasing options. Many approaches offer justifications for their recommendations based on the similarity (in some sense) between users, past purchases, etc., which requires some knowledge of the users. In this paper, we present a recommender system with explanatory capabilities which can deal with the so-called cold-start problem since it does not require any previous knowledge of the user. Our method learns the relationship between the products and some relevant words appearing in the textual reviews from previous customers for those products. Then, starting from the textual query of a user’s request for a recommendation, our approach elaborates a list of products and explains each recommendation based on the compatibility between the query’s words and the relevant terms for each product.spa
dc.description.sponsorshipThis work was funded by grant PID2019-109238GB-C21 (Ministry of Science and Innovation, Spain). The participa- tion of Pablo Pérez-Núñez was funded by the Principality of Asturias through the predoctoral granting program Severo Ochoa (ref. BP19-012).
dc.format.extent3994-3995spa
dc.language.isoengspa
dc.relation.ispartofIEEE International Conference on Systems, Man, and Cybernetics (SMC)spa
dc.rightsCC Reconocimiento – No Comercial – Sin Obra Derivada 4.0 Internacional
dc.rights© 2023 IEEE
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectRecommender systemsspa
dc.subjectExplainabilityspa
dc.subjectCold-startspa
dc.subjectText-based recommendationsspa
dc.titleTransparent Text-Based Item Recommendation: Introducing TRecXspa
dc.typeconference outputspa
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109238GB-C21/ES/SISTEMAS DE RECOMENDACION EXPLICABLES/ spa
dc.relation.projectIDBP19-012
dc.rights.accessRightsopen accessspa
dc.type.hasVersionAM


Ficheros en el ítem

untranslated

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

CC Reconocimiento – No Comercial – Sin Obra Derivada 4.0 Internacional
Este ítem está sujeto a una licencia Creative Commons