Mostrar el registro sencillo del ítem

Using autoencoders and deep transfer learning to determine the stellar parameters of 286 CARMENES M dwarfs

dc.contributor.authorMas-Buitrago, Pedro
dc.contributor.authorGonzález Marcos, Ana
dc.contributor.authorSolano Márquez, Enrique
dc.contributor.authorPassegger, V. M.
dc.contributor.authorCortés Contreras, M.
dc.contributor.authorOrdieres Meré, J.
dc.contributor.authorBello García, Antonio 
dc.contributor.authorCaballero, J. A.
dc.contributor.authorSchweitzer, A.
dc.contributor.authorTabernero, H.M.
dc.contributor.authorMontes, D.
dc.contributor.authorCifuentes, C.
dc.date.accessioned2025-01-20T12:10:23Z
dc.date.available2025-01-20T12:10:23Z
dc.date.issued2024-07-15
dc.identifier.citationAstronomy & Astrophysics 687 (2024); doi:10.1051/0004-6361/202449865spa
dc.identifier.urihttps://hdl.handle.net/10651/76287
dc.description.abstractContext. Deep learning (DL) techniques are a promising approach among the set of methods used in the ever-challenging determination of stellar parameters in M dwarfs. In this context, transfer learning could play an important role in mitigating uncertainties in the results due to the synthetic gap (i.e. difference in feature distributions between observed and synthetic data). Aims. We propose a feature-based deep transfer learning (DTL) approach based on autoencoders to determine stellar parameters from high-resolution spectra. Using this methodology, we provide new estimations for the effective temperature, surface gravity, metallicity, and projected rotational velocity for 286 M dwarfs observed by the CARMENES survey. Methods. Using autoencoder architectures, we projected synthetic PHOENIX-ACES spectra and observed CARMENES spectra onto a new feature space of lower dimensionality in which the differences between the two domains are reduced. We used this low-dimensional new feature space as input for a convolutional neural network to obtain the stellar parameter determinations. Results. We performed an extensive analysis of our estimated stellar parameters, ranging from 3050 to 4300 K, 4.7 to 5.1 dex, and −0.53 to 0.25 dex for Teff, log 𝑔, and [Fe/H], respectively. Our results are broadly consistent with those of recent studies using CARMENES data, with a systematic deviation in our Teff scale towards hotter values for estimations above 3750 K. Furthermore, our methodology mitigates the deviations in metallicity found in previous DL techniques due to the synthetic gap. Conclusions. We consolidated a DTL-based methodology to determine stellar parameters in M dwarfs from synthetic spectra, with no need for high-quality measurements involved in the knowledge transfer. These results suggest the great potential of DTL to mitigate the differences in feature distributions between the observations and the PHOENIX-ACES spectra.spa
dc.description.sponsorshipWe acknowledge financial support from the Agencia Estatal de Investigación (AEI/10.13039/501100011033) of the Ministerio de Ciencia e Innovación and the ERDF ‘A way of making Europe’ through projects PID2022-137241NB-C4[2,4], PID2020-112949GB-I00 (Spanish Virtual Observatory https://svo.cab.inta-csic.es), PID2020-117493GB-I00, PID2019-109522GB-C5[1,4], and grant PR47/21 TAU-CM PRTR-CM, the Instituto Nacional de Técnica Aeroespacial through grant PRE-OVE, and the Gobierno de Canarias through project ProID2020010129.spa
dc.language.isoengspa
dc.publisherEDP Sciencesspa
dc.relation.ispartofAstronomy and Astrophysicsspa
dc.rights© The Authors 2024
dc.rightsCC Reconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectmethods: data analysis / techniques: spectroscopic / stars: fundamental parameters / stars: late-type / stars: low-massspa
dc.titleUsing autoencoders and deep transfer learning to determine the stellar parameters of 286 CARMENES M dwarfsspa
dc.typejournal articlespa
dc.identifier.doi10.1051/0004-6361/202449865
dc.relation.projectIDPID2022-137241NB-C4spa
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-112949GB-I00/ES/EL OBSERVATORIO VIRTUAL ESPAÑOL. EXPLOTACION CIENTIFICO-TECNICA DE ARCHIVOS ASTRONOMICOS/ spa
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-117493GB-I00/ES/EXPLOTACION CIENTIFICA DE LOS NUEVOS ESPECTROGRAFOS ESPRESSO, NIRPS Y HORUS PARA EL ESTUDIO DE EXOPLANETAS Y LAS ESTRELLAS MAS PRIMITIVAS DE LA VIA LACTEA/ spa
dc.relation.projectIDPID2019-109522GB-C5spa
dc.relation.projectIDPR47/21 TAU-CM PRTR-CMspa
dc.relation.projectIDProID2020010129spa
dc.rights.accessRightsopen accessspa
dc.type.hasVersionVoRspa


Ficheros en el ítem

untranslated

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© The Authors 2024
Este ítem está sujeto a una licencia Creative Commons