Mostrar el registro sencillo del ítem
Exploring deep fully convolutional neural networks for surface defect detection in complex geometries
dc.contributor.author | García Peña, Daniel | |
dc.contributor.author | García Pérez, Diego | |
dc.contributor.author | Díaz Blanco, Ignacio | |
dc.contributor.author | Marina Juárez, Jorge | |
dc.date.accessioned | 2024-12-10T09:59:09Z | |
dc.date.available | 2024-12-10T09:59:09Z | |
dc.date.issued | 2024-09 | |
dc.identifier.citation | García Peña, D., García Pérez, D., Díaz Blanco, I. et al. Exploring deep fully convolutional neural networks for surface defect detection in complex geometries. Int J Adv Manuf Technol 134, 97–111 (2024). https://doi.org/10.1007/s00170-024-14069-7 | |
dc.identifier.issn | 1433-3015 | |
dc.identifier.issn | 0268-3768 | |
dc.identifier.uri | https://hdl.handle.net/10651/75918 | |
dc.description.abstract | In this paper, we propose a machine learning approach for detecting superficial defects in metal surfaces using point cloud data. We compare the performance of two popular deep learning architectures, multilayer perceptron networks (MLPs) and fully convolutional networks (FCNs), with varying feature sets. Our results show that FCNs (F1=0.94) outperformed MLPs (F1=0.52) in terms of precision, recall, and F1-score. We found that transfer learning with pre-trained models can improve performance when the amount of available data is limited. Our study highlights the importance of considering the amount and quality of training data in developing machine learning models for defect detection in industrial settings with 3D images. | spa |
dc.description.sponsorship | Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. | |
dc.format.extent | p. 97-111 | spa |
dc.language.iso | eng | spa |
dc.relation.ispartof | The International Journal of Advanced Manufacturing Technology | spa |
dc.rights | CC Reconocimiento 4.0 Internacional | |
dc.rights | © The Author(s) 2024 | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject | segmentación de imágenes | spa |
dc.subject | detección de defectos | spa |
dc.subject | redes convolucionales (CNN) | spa |
dc.subject | deep learning | spa |
dc.subject | machine learning | spa |
dc.subject | imágenes 3D | spa |
dc.subject | fully convolutional neural networks | spa |
dc.subject | transfer learning | spa |
dc.title | Exploring deep fully convolutional neural networks for surface defect detection in complex geometries | spa |
dc.type | journal article | spa |
dc.identifier.doi | 10.1007/s00170-024-14069-7 | |
dc.rights.accessRights | open access | spa |
dc.type.hasVersion | VoR | spa |