Show simple item record

Exploring deep fully convolutional neural networks for surface defect detection in complex geometries

dc.contributor.authorGarcía Peña, Daniel
dc.contributor.authorGarcía Pérez, Diego 
dc.contributor.authorDíaz Blanco, Ignacio 
dc.contributor.authorMarina Juárez, Jorge 
dc.date.accessioned2024-12-10T09:59:09Z
dc.date.available2024-12-10T09:59:09Z
dc.date.issued2024-09
dc.identifier.citationGarcía Peña, D., García Pérez, D., Díaz Blanco, I. et al. Exploring deep fully convolutional neural networks for surface defect detection in complex geometries. Int J Adv Manuf Technol 134, 97–111 (2024). https://doi.org/10.1007/s00170-024-14069-7
dc.identifier.issn1433-3015
dc.identifier.issn0268-3768
dc.identifier.urihttps://hdl.handle.net/10651/75918
dc.description.abstractIn this paper, we propose a machine learning approach for detecting superficial defects in metal surfaces using point cloud data. We compare the performance of two popular deep learning architectures, multilayer perceptron networks (MLPs) and fully convolutional networks (FCNs), with varying feature sets. Our results show that FCNs (F1=0.94) outperformed MLPs (F1=0.52) in terms of precision, recall, and F1-score. We found that transfer learning with pre-trained models can improve performance when the amount of available data is limited. Our study highlights the importance of considering the amount and quality of training data in developing machine learning models for defect detection in industrial settings with 3D images.spa
dc.description.sponsorshipOpen Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
dc.format.extentp. 97-111spa
dc.language.isoengspa
dc.relation.ispartofThe International Journal of Advanced Manufacturing Technologyspa
dc.rightsCC Reconocimiento 4.0 Internacional
dc.rights© The Author(s) 2024
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectsegmentación de imágenesspa
dc.subjectdetección de defectosspa
dc.subjectredes convolucionales (CNN)spa
dc.subjectdeep learningspa
dc.subjectmachine learningspa
dc.subjectimágenes 3Dspa
dc.subjectfully convolutional neural networksspa
dc.subjecttransfer learningspa
dc.titleExploring deep fully convolutional neural networks for surface defect detection in complex geometriesspa
dc.typejournal articlespa
dc.identifier.doi10.1007/s00170-024-14069-7
dc.rights.accessRightsopen accessspa
dc.type.hasVersionVoRspa


Files in this item

untranslated

This item appears in the following Collection(s)

Show simple item record

CC Reconocimiento 4.0 Internacional
This item is protected with a Creative Commons License