RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Ponencias, Discursos y Conferencias
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Ponencias, Discursos y Conferencias
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Power converter parameter prediction based on Extended Kalman Filter

Autor(es) y otros:
Fernández Costales, MiguelAutoridad Uniovi; Fernández Miaja, PabloAutoridad Uniovi; Arias Pérez de Azpeitia, ManuelAutoridad Uniovi; Fernández Álvarez, José AntonioAutoridad Uniovi
Palabra(s) clave:

DC/DC Converters

Power electronics

Space

Artificial Intelligence

Fecha de publicación:
2024
Resumen:

In space power systems, high levels of reliability are required to not jeopardize the objective of the mission. With the purpose of increasing their lifetimes, a non-invasive health monitoring method is presented that estimates the parasitic resistance of the converters that conform the power subsystem. This parasitic resistance increases when the system degrades. This method is based on the use of an extended Kalman filter. By taking measurements already required either by the control stage or for telemetry purposes, it is demonstrated that it is possible to detect an increase in parasitic resistance in the converter. The implementation of this method has been validated both through simulation and experimentally.

In space power systems, high levels of reliability are required to not jeopardize the objective of the mission. With the purpose of increasing their lifetimes, a non-invasive health monitoring method is presented that estimates the parasitic resistance of the converters that conform the power subsystem. This parasitic resistance increases when the system degrades. This method is based on the use of an extended Kalman filter. By taking measurements already required either by the control stage or for telemetry purposes, it is demonstrated that it is possible to detect an increase in parasitic resistance in the converter. The implementation of this method has been validated both through simulation and experimentally.

Descripción:

SPAICE Conference on AI in and for Space (1st. 2024. European Centre for Space Applications and Telecommunications (ECSAT), UK)

URI:
https://hdl.handle.net/10651/75377
Patrocinado por:

his work has been funded by the Spanish Ministry of Science through PID2021-127707OB-C21 and by the Principality of Asturias through PA-23-BP21-207.

Colecciones
  • Ingeniería Eléctrica, Electrónica, de Comunicaciones y de Sistemas [1088]
  • Investigaciones y Documentos OpenAIRE [8415]
  • Ponencias, Discursos y Conferencias [4231]
Ficheros en el ítem
Thumbnail
untranslated
Postprint (3.880Mb)
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image