Mostrar el registro sencillo del ítem

Explainable chemical artificial intelligence from accurate machine learning of real-space chemical descriptors

dc.contributor.authorGallegos González, Miguel 
dc.contributor.authorVassilev Galindo, V.
dc.contributor.authorPoltavsky, I.
dc.contributor.authorMartín Pendás, Ángel 
dc.contributor.authorTkatchenko, A.
dc.date.accessioned2024-10-22T06:06:43Z
dc.date.available2024-10-22T06:06:43Z
dc.date.issued2024
dc.identifier.citationGallegos, M., Vassilev-Galindo, V., Poltavsky, I. et al. Explainable chemical artificial intelligence from accurate machine learning of real-space chemical descriptors. Nat Commun 15, 4345 (2024). https://doi.org/10.1038/s41467-024-48567-9
dc.identifier.issnp. 2041-1723
dc.identifier.urihttps://hdl.handle.net/10651/75151
dc.description.abstractMachine-learned computational chemistry has led to a paradoxical situation in which molecular properties can be accurately predicted, but they are difficult to interpret. Explainable AI (XAI) tools can be used to analyze complex models, but they are highly dependent on the AI technique and the origin of the reference data. Alternatively, interpretable real-space tools can be employed directly, but they are often expensive to compute. To address this dilemma between explainability and accuracy, we developed SchNet4AIM, a SchNet-based architecture capable of dealing with local one-body (atomic) and two-body (interatomic) descriptors. The performance of SchNet4AIM is tested by predicting a wide collection of real-space quantities ranging from atomic charges and delocalization indices to pairwise interaction energies. The accuracy and speed of SchNet4AIM breaks the bottleneck that has prevented the use of real-space chemical descriptors in complex systems. We show that the group delocalization indices, arising from our physically rigorous atomistic predictions, provide reliable indicators of supramolecular binding events, thus contributing to the development of Explainable Chemical Artificial Intelligence (XCAI) models.
dc.description.sponsorshipThe authors kindly acknowledge the Spanish MICIU (No. PID2021- 122763NB-I00 to A.M.P. and M.G.) for financial support. Additionally, M.G. especially thanks the Spanish MICIU for the predoctoral FPU grant (Nos. FPU19/02903 and EST22/00100 to M.G.
dc.language.isoeng
dc.relation.ispartofNature Communications
dc.rights© The Author(s) 2024
dc.rightsCC Reconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceScopus
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85193966120&doi=10.1038%2fs41467-024-48567-9&partnerID=40&md5=f2e619dac13baddb461991fa0eea8634
dc.titleExplainable chemical artificial intelligence from accurate machine learning of real-space chemical descriptors
dc.typejournal article
dc.identifier.doi10.1038/s41467-024-48567-9
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-122763NB-I00/ES/TOPOLOGIA QUIMICO CUANTICA Y SU RETROALIMENTACION CON EL APRENDIZAJE AUTOMATICO, LA TEORIA DEL ENLACE QUIMICO Y LA CATALISIS/ 
dc.relation.publisherversionhttp://dx.doi.org/10.1038/s41467-024-48567-9
dc.rights.accessRightsopen access


Ficheros en el ítem

untranslated
untranslated

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© The Author(s) 2024
Este ítem está sujeto a una licencia Creative Commons