RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Absorption, transport and insulin-mimetic properties of bis(maltolato)oxovanadium (IV) in streptozotocin-induced hyperglycemic rats by integrated mass spectrometric techniques

Autor(es) y otros:
Iglesias González, TamaraAutoridad Uniovi; Sánchez González, Cristina; Montes Bayón, MaríaAutoridad Uniovi; Llopis González, Juan; Sanz Medel, AlfredoAutoridad Uniovi
Palabra(s) clave:

Vanadium. Transferrin . Insulin Mimetic . Hplc . Mass Spectrometry. Icp-Ms . Maldi-Tof

Fecha de publicación:
2011
Versión del editor:
http://dx.doi.org/10.1007/s00216-011-5286-7
Citación:
Analytical and Bioanalytical Chemistry, p. 1-9 (2011); doi:10.1007/s00216-011-5286-7
Descripción física:
p. 1-9
Resumen:

The use of V(IV) complexes as insulin-enhancing agents has been increasing during the last decade. Among them, 3-hydroxy-2-methyl-4-pyrone and 2-ethyl-3-hydroxy- 4-pyrone (maltol and ethyl maltol, respectively) have proven to be especially suitable as ligands for vanadyl ions. In fact, they have passed phase I and phase II clinical trials, respectively. However, the mechanism through which those drugs exert their insulin-mimetic properties is still not fully understood. Thus, the aim of this study is to obtain an integrated picture of the absorption, biodistribution and insulin-mimetic properties of the bis(maltolato)oxovanadium (IV) (BMOV) in streptozotocin-induced hyperglycaemic rats. For this purpose, BMOV hypoglycaemic properties were evaluated by monitoring both the circulating glucose and the glycohemoglobin, biomarkers of diabetes mellitus. In both cases, the results were drug concentration dependent. Using doses of vanadium at 3 mg/day, it was possible to reduce the glycaemia of the diabetic rats to almost control levels. BMOV absorption experiments have been conducted by intestinal perfusion revealing that approximately 35% of Vis absorbed by the intestinal cells. Additionally, the transport of the absorbed vanadium (IV) by serum proteins was studied. For this purpose, a speciation strategy using highperformance liquid chromatography (HPLC) for separation and inductively coupled serum mass spectrometry, ICP-MS, for detection has been employed. The obtained HPLC-ICPMS results, confirmed by MALDI-MS data, showed evidence that V, administered orally, is uniquely bound to transferrin in rat serum.

The use of V(IV) complexes as insulin-enhancing agents has been increasing during the last decade. Among them, 3-hydroxy-2-methyl-4-pyrone and 2-ethyl-3-hydroxy- 4-pyrone (maltol and ethyl maltol, respectively) have proven to be especially suitable as ligands for vanadyl ions. In fact, they have passed phase I and phase II clinical trials, respectively. However, the mechanism through which those drugs exert their insulin-mimetic properties is still not fully understood. Thus, the aim of this study is to obtain an integrated picture of the absorption, biodistribution and insulin-mimetic properties of the bis(maltolato)oxovanadium (IV) (BMOV) in streptozotocin-induced hyperglycaemic rats. For this purpose, BMOV hypoglycaemic properties were evaluated by monitoring both the circulating glucose and the glycohemoglobin, biomarkers of diabetes mellitus. In both cases, the results were drug concentration dependent. Using doses of vanadium at 3 mg/day, it was possible to reduce the glycaemia of the diabetic rats to almost control levels. BMOV absorption experiments have been conducted by intestinal perfusion revealing that approximately 35% of Vis absorbed by the intestinal cells. Additionally, the transport of the absorbed vanadium (IV) by serum proteins was studied. For this purpose, a speciation strategy using highperformance liquid chromatography (HPLC) for separation and inductively coupled serum mass spectrometry, ICP-MS, for detection has been employed. The obtained HPLC-ICPMS results, confirmed by MALDI-MS data, showed evidence that V, administered orally, is uniquely bound to transferrin in rat serum.

URI:
http://hdl.handle.net/10651/7501
ISSN:
1618-2642
Identificador local:

20111180

DOI:
10.1007/s00216-011-5286-7
Colecciones
  • Artículos [37541]
Ficheros en el ítem
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image