Mostrar el registro sencillo del ítem

Polymorphism and phase stability of hydrated magnesium carbonate nesquehonite mgco3·3h2o: negative axial compressibility and thermal expansion in a cementitious material

dc.contributor.authorSantamaría Pérez, D.
dc.contributor.authorChuliá Jordán, R.
dc.contributor.authorGonzález Platas, J.
dc.contributor.authorOtero de la Roza, Alberto 
dc.contributor.authorRuiz Fuertes, J.
dc.contributor.authorPellicer Porres, J.
dc.contributor.authorOliva, R.
dc.contributor.authorPopescu, C.
dc.date.accessioned2024-07-11T07:34:38Z
dc.date.available2024-07-11T07:34:38Z
dc.date.issued2024
dc.identifier.citationCrystal Growth and Design, 24(3), p. 1159-1169 (2024); doi:10.1021/acs.cgd.3c01171
dc.identifier.issn1528-7483
dc.identifier.urihttps://hdl.handle.net/10651/73728
dc.description.abstractThe P−T phase diagram of the hydrated magnesium carbonate nesquehonite (MgCO3·3H2O) has not been reported in the literature. In this paper, we present a joint experimental and computational study of the phase stability and structural behavior of this cementitious material at high-pressure and high-temperature conditions using in situ single-crystal and synchrotron powder X-ray diffraction measurements in resistive-heated diamond anvil cells plus density functional theory calculations. Our results show that nesquehonite undergoes two pressure-induced phase transitions at 2.4 (HP1) and 4.0 GPa (HP2) at ambient temperature. We have found negative axial compressibility and thermal expansivity values, likely related to the directionality of the hydrogen bonds. The equations of state of the different phases have been determined. All the room-temperature compression effects were reversible. Heating experiments at 0.7 GPa show a first temperature-induced decomposition at 115 °C, probably into magnesite and a MgCO3·4H2O phase.
dc.description.abstractThe P–T phase diagram of the hydrated magnesium carbonate nesquehonite (MgCO3·3H2O) has not been reported in the literature. In this paper, we present a joint experimental and computational study of the phase stability and structural behavior of this cementitious material at high-pressure and high-temperature conditions using in situ single-crystal and synchrotron powder X-ray diffraction measurements in resistive-heated diamond anvil cells plus density functional theory calculations. Our results show that nesquehonite undergoes two pressure-induced phase transitions at 2.4 (HP1) and 4.0 GPa (HP2) at ambient temperature. We have found negative axial compressibility and thermal expansivity values, likely related to the directionality of the hydrogen bonds. The equations of state of the different phases have been determined. All the room-temperature compression effects were reversible. Heating experiments at 0.7 GPa show a first temperature-induced decomposition at 115 °C, probably into magnesite and a MgCO3·4H2O phase.
dc.description.sponsorshipThis research was funded by the Spanish Ministerio de Ciencia e Innovación and the Agencia Estatal de Investigación (MCIN/AEI/10.13039/501100011033) under projects PGC2021-125518NB-I00, PID2021-125927NA-C22, and PID2019-106383GB-C44 (cofinanced by EU FEDER funds) as well as by the Generalitat Valenciana under projects CIAICO/2021/241 and MFA/2022/007 (funded by the European Union�Next Generation EU). A.O.R. thanks the Principality of Asturias (FICYT), project AYUD/2021/51036 cofinanced by EU FEDER. The authors also thank the MALTA Consolider Supercomputing Center and Compute Canada for computational resources, Servicios Generales de Apoyo a la Investigación (SEGAI) at La Laguna University, and ALBA-CELLS synchrotron for providing beamtime under experiments 2020084419 and 2022025712.
dc.format.extentp. 1159-1169
dc.language.isoeng
dc.relation.ispartofCrystal Growth and Design
dc.rights© 2024 The Authors. Published by American Chemical Society
dc.rightsCC Reconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceScopus
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85184784382&doi=10.1021%2facs.cgd.3c01171&partnerID=40&md5=49f66adfb1670dcdebd5d4073b922f74
dc.titlePolymorphism and phase stability of hydrated magnesium carbonate nesquehonite mgco3·3h2o: negative axial compressibility and thermal expansion in a cementitious material
dc.typejournal article
dc.identifier.doi10.1021/acs.cgd.3c01171
dc.relation.projectIDMCIN/AEI/10.13039/501100011033
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-125518NB-I00/ES/ESTABILIDAD ESTRUCTURAL Y REACTIVIDAD DE FASES DENSAS DE CO2 Y CARBONATOS A ALTA TEMPERATURA Y EN DISTINTOS ENTORNOS QUIMICOS/ 
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-125927NA-C22/ES/MODIFICACIONES ELECTRONICAS Y MAGNETICAS EN DOBLES PEROVSKITAS DE HIERRO BAJO EXTREMAS CONDICIONES/ 
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106383GB-C44/ES/CORRELACIONES ESTRUCTURALES Y OPTICAS EN MACRO- Y NANO-MATERIALES FUNCIONALES CON IONES ACTIVOS BAJO CONDICIONES EXTREMAS DE PRESION Y%2FO TEMPERATURA/ 
dc.relation.projectIDCIAICO/2021/241
dc.relation.projectIDMFA/2022/007 AYUD/2021/51036
dc.relation.projectID2020084419
dc.relation.projectID2022025712
dc.relation.publisherversionhttp://dx.doi.org/10.1021/acs.cgd.3c01171
dc.rights.accessRightsopen access


Ficheros en el ítem

untranslated

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© 2024 The Authors. Published by American Chemical Society
Este ítem está sujeto a una licencia Creative Commons