RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Peroxydisulfate activation by cerium (iv) oxide-supported palladium (pd/ceo2) for bisphenol a oxidation and e. Coli inactivation from aquatic matrices

Autor(es) y otros:
Ioannidi, A. A.; Bampos, G.; Antonopoulou, M.; Oulego Blanco, PaulaAutoridad Uniovi; Mantzavinos, D.; Frontistis, Z.
Fecha de publicación:
2024
Versión del editor:
http://dx.doi.org/10.1016/j.jece.2023.111851
Citación:
Journal of Environmental Chemical Engineering, 12(1), (2024); doi:10.1016/j.jece.2023.111851
Resumen:

In this study, a series of Pd/CeO2 catalysts were synthesized, characterized, and evaluated for the activation of persulfate and the degradation of the micropollutant, bisphenol A (BPA). The efficiency followed a volcano-type behavior with respect to Pd loading, and the 0.25% wt. Pd/CeO2 exhibited the highest catalytic activity. However, this activity strongly depended on the operating conditions. The system was able to degrade 500 μg/L BPA in less than 30 min, and the removal was favored at near neutral pH (6.2). Scavenging experiments highlighted the role of superoxide and singlet oxygen, followed by sulfate radicals. The efficiency was found to be stable across several cycles, despite a slight decrease in the first cycle. The removal of BPA decreased with the complexity of the water matrices, showing the need for system optimization under real conditions. Five transformation products were identified using UHPLC/TOF-MS and their ecotoxicity was estimated using ECOSAR. Intriguingly, the system was capable of inactivating 99.99% of 2.4 × 105 CFU/mL E. coli, in less than 210 min making it an appealing alternative technology for the simultaneous inactivation of pathogens and degradation of micropollutants in environmental systems.

In this study, a series of Pd/CeO2 catalysts were synthesized, characterized, and evaluated for the activation of persulfate and the degradation of the micropollutant, bisphenol A (BPA). The efficiency followed a volcano-type behavior with respect to Pd loading, and the 0.25% wt. Pd/CeO2 exhibited the highest catalytic activity. However, this activity strongly depended on the operating conditions. The system was able to degrade 500 μg/L BPA in less than 30 min, and the removal was favored at near neutral pH (6.2). Scavenging experiments highlighted the role of superoxide and singlet oxygen, followed by sulfate radicals. The efficiency was found to be stable across several cycles, despite a slight decrease in the first cycle. The removal of BPA decreased with the complexity of the water matrices, showing the need for system optimization under real conditions. Five transformation products were identified using UHPLC/TOF-MS and their ecotoxicity was estimated using ECOSAR. Intriguingly, the system was capable of inactivating 99.99% of 2.4 × 105 CFU/mL E. coli, in less than 210 min making it an appealing alternative technology for the simultaneous inactivation of pathogens and degradation of micropollutants in environmental systems.

URI:
https://hdl.handle.net/10651/73716
ISSN:
2213-3437
DOI:
10.1016/j.jece.2023.111851
Patrocinado por:

European Union (European Social Fund-ESF) through the Operational Programme "Human Resources Development, Education and Lifelong Learning"

Colecciones
  • Artículos [37548]
Ficheros en el ítem
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image