Show simple item record

Multi-step machine learning forecasting of power consumption and pv generation for distributed energy management applications

dc.contributor.authorPasarín, O.
dc.contributor.authorGarcía Fernández, Pablo 
dc.contributor.authorGonzález, L.
dc.contributor.authorVilla, G.
dc.date.accessioned2024-07-11T07:34:08Z
dc.date.available2024-07-11T07:34:08Z
dc.date.issued2023
dc.identifier.isbn979-835031644-5
dc.identifier.urihttps://hdl.handle.net/10651/73682
dc.description.sponsorshipThis work was supported in part by the Spanish Ministry of Innovation and Science under Grant MCINN-22-TED2021-129796B-C21 and by the Principality of Asturias, FICYT, FEDER funds under Grant SV-PA-21-AYUD/2021/57546.
dc.format.extentp. 1472-1479
dc.language.isoeng
dc.relation.ispartof2023 IEEE Energy Conversion Congress and Exposition, ECCE 2023
dc.rights©,
dc.sourceScopus
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85182917125&doi=10.1109%2fECCE53617.2023.10362169&partnerID=40&md5=bcf4f69579c5fc3684694d7dd2bb7f55
dc.titleMulti-step machine learning forecasting of power consumption and pv generation for distributed energy management applications
dc.typeconference output
dc.identifier.doi10.1109/ECCE53617.2023.10362169
dc.relation.publisherversionhttp://dx.doi.org/10.1109/ECCE53617.2023.10362169


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record