Gnss-retrieved precipitable water vapour in the atlantic coast of france and Spain with gpt3 model
Autor(es) y otros:
Fecha de publicación:
Versión del editor:
Citación:
Descripción física:
Resumen:
Water vapour is a critical atmospheric parameter to understand the Earth’s climate system and it is characterized by a complex variability in time and space. GNSS observations have become an important source of information of the water vapour, thanks to its high temporal and spatial resolution. However, the lack of meteorological sites collocated with the GNSS site could hamper water vapour retrieval. The empirical blind models can fll this gap. This study analyses the temporal and spatial distribution of the water vapour using nine GNSS sites located on the Atlantic coast of Spain and France, with the empirical blind model GPT3 as the source of meteorological information. The observations were processed with Bernese 5.2 software on a double diference approach and validated with Zenith Total Delay EUREF REPRO2 values. Consequently, four-years series of water vapour was determined and validated using two matched radiosonde sites. The characterization of the water vapour on the area shows clear seasonal characteristics that the technique captures, using an empirical blind model for the whole process. Maximum values are observed in summer season and minimum in winter. The PWV tends to decrease with increasing latitude in the area of the study. The short-term variations can be reproduced by the high temporal resolution of the GNSS-retrieved water vapour and show a diferent behaviour over the area, but a similar pattern with a peak in the afternoon and minimum at night was found. Also, less variability is observed in winter season and higher in summertime.
Water vapour is a critical atmospheric parameter to understand the Earth’s climate system and it is characterized by a complex variability in time and space. GNSS observations have become an important source of information of the water vapour, thanks to its high temporal and spatial resolution. However, the lack of meteorological sites collocated with the GNSS site could hamper water vapour retrieval. The empirical blind models can fll this gap. This study analyses the temporal and spatial distribution of the water vapour using nine GNSS sites located on the Atlantic coast of Spain and France, with the empirical blind model GPT3 as the source of meteorological information. The observations were processed with Bernese 5.2 software on a double diference approach and validated with Zenith Total Delay EUREF REPRO2 values. Consequently, four-years series of water vapour was determined and validated using two matched radiosonde sites. The characterization of the water vapour on the area shows clear seasonal characteristics that the technique captures, using an empirical blind model for the whole process. Maximum values are observed in summer season and minimum in winter. The PWV tends to decrease with increasing latitude in the area of the study. The short-term variations can be reproduced by the high temporal resolution of the GNSS-retrieved water vapour and show a diferent behaviour over the area, but a similar pattern with a peak in the afternoon and minimum at night was found. Also, less variability is observed in winter season and higher in summertime.
ISSN:
Patrocinado por:
We would like to thank the IGN, IGE and EUREF for providing access to GNSS observations, the NOAA Integrated Global Radiosonde Archive for providing radiosonde data and Vienna University of Technology for publishing VMF Data Server.
Colecciones
- Artículos [36307]
- Explotación y Prospección de Minas [305]