dc.contributor.author | Saeed Hazkial Gerges, Mariam | |
dc.date.accessioned | 2024-07-11T07:31:47Z | |
dc.date.available | 2024-07-11T07:31:47Z | |
dc.date.issued | 2022 | |
dc.identifier.isbn | 978-012823211-8 | |
dc.identifier.uri | https://hdl.handle.net/10651/73459 | |
dc.description.abstract | This article discusses Fourier analysis and associated transform methods for both discrete-time and continuous-time signals and system. Fourier analysis is based on using real or complex sinusoidal functions, and it allows signals to be represented in terms of sums of sinusoidal components (i.e., sine and cosine functions). This allows decomposing any complex periodic or non-periodic signal into easy-to-handle sine and cosine waveforms which facilitates their mathematical manipulation and understanding. | |
dc.format.extent | p. 622-626 | |
dc.language.iso | eng | |
dc.relation.ispartof | Encyclopedia of Electrical and Electronic Power Engineering: Volumes 1-3 | |
dc.rights | Copyright © 2023 Elsevier Inc. | |
dc.source | Scopus | |
dc.source.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85186840048&doi=10.1016%2fB978-0-12-821204-2.00093-3&partnerID=40&md5=5a44319d4007f61f7986677070d84db2 | |
dc.title | Fourier transform and fourier series | |
dc.type | book part | |
dc.identifier.doi | 10.1016/B978-0-12-821204-2.00093-3 | |
dc.relation.publisherversion | http://dx.doi.org/10.1016/B978-0-12-821204-2.00093-3 | |