Mostrar el registro sencillo del ítem

Parametric study of organic Rankine working fluids via Bayesian optimization of a preference learning ranking for a waste heat recovery system applied to a case study marine engine

dc.contributor.authorDíaz Secades, Luis Alfonso 
dc.contributor.authorGonzález Rodríguez, Rubén 
dc.contributor.authorRivera Rellán, Noelia 
dc.contributor.authorQuevedo Pérez, José Ramón 
dc.contributor.authorMontañés Roces, Elena 
dc.date.accessioned2024-06-25T10:53:25Z
dc.date.available2024-06-25T10:53:25Z
dc.date.issued2024-08-15
dc.identifier.citationOcean Engineering, 306 (2024); doi:10.1016/j.oceaneng.2024.118124.
dc.identifier.issn0029-8018
dc.identifier.urihttps://hdl.handle.net/10651/72988
dc.description.abstractThis work presents an analysis of environmentally friendly organic Rankine cycle (ORC) fluids and their application in a marine waste heat recovery system (WHRS) to reduce the utilization of fuel, thus reducing the emission of harmful pollutants. The proposed WHRS consists of four subsystems: steam Rankine, organic Rankine, Seebeck effect heat to electricity conversion and desalination. Among the 80 ORC working fluids analyzed, R1233zd(E), Novec 649 and SES36 exhibit the best overall performance in terms of power output, efficiency, safety and environmental impact. The results indicate that the implementation of innovative energy efficiency systems that comply with MEPC.1-Circ.896, such as this proposal, can reduce the IMO technical energy efficiency index (EEXI) up to 7.26 % and the operational carbon intensity indicator (CII) up to 14.24 %.spa
dc.description.sponsorshipThis research has been partially supported by the Spanish Ministry of Science and Innovation through the grant PID2019-110742RB-I00.
dc.language.isoengspa
dc.publisherElsevierspa
dc.relation.ispartofOcean Engineering, Vol 306spa
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional*
dc.rights© 2024 The Authors.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subjectWaste heat recoveryspa
dc.subjectMarine diesel enginespa
dc.subjectOrganic Rankine fluidsspa
dc.subjectPreference learningspa
dc.subjectBayesian optimizationspa
dc.titleParametric study of organic Rankine working fluids via Bayesian optimization of a preference learning ranking for a waste heat recovery system applied to a case study marine enginespa
dc.typejournal articlespa
dc.identifier.doi10.1016/j.oceaneng.2024.118124
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-110742RB-I00/ES/EXPLOTANDO EL CONOCIMIENTO DISPONIBLE PARA ADAPTAR Y APLICAR MODELOS APRENDIDOS A PARTIR DE DOMINIOS DIFERENTES/
dc.relation.publisherversionhttps://doi.org/10.1016/j.oceaneng.2024.118124
dc.rights.accessRightsopen accessspa
dc.type.hasVersionVoRspa


Ficheros en el ítem

untranslated

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-CompartirIgual 4.0 Internacional
Este ítem está sujeto a una licencia Creative Commons