Mostrar el registro sencillo del ítem

Application of machine learning techniques to predict biodiesel iodine value

dc.contributor.authorDíez Valbuena, Guillermo 
dc.contributor.authorGarcía Tuero, Alejandro 
dc.contributor.authorDíez Peláez, Jorge 
dc.contributor.authorRodríguez Ordóñez, Eduardo 
dc.contributor.authorHernández Battez, Antolín Esteban 
dc.date.accessioned2024-05-31T09:40:54Z
dc.date.available2024-05-31T09:40:54Z
dc.date.issued2024
dc.identifier.citationEnergy, 292 (2024); doi:10.1016/J.ENERGY.2024.130638
dc.identifier.issn0360-5442
dc.identifier.urihttps://hdl.handle.net/10651/72596
dc.description.abstractBiodiesel is a good alternative to fossil fuels for conventional engines, but determining the properties of biodiesel can be a time-consuming and resource-intensive process. Therefore, the development of models capable of predicting these properties would be of great importance. In this work, different machine learning models were investigated for predicting the Iodine Value (IV) based on the distribution of fatty acid methyl esters (FAME). For this purpose, a database with 266 examples of biodiesel from different feedstocks (1st, 2nd and 3rd generation) was used along the leave-one-out methodology. The main results of the work are: the double bonds and the distribution of FAMEs are the best attributes for predicting IV and the XGBoost algorithm gives an absolute mean error of 11.4 units; the machine learning models for predicting biodiesel properties need to be trained on a large number and variety of biodiesel examples to better predict and generalize; the use of both ANNs and the hold-out approach of dividing the dataset into train/validate/test are not recommended due to the risk of overfitting and the algorithm's dependence on which examples form each group given the currently available data. The leave-one-out method is most appropriate for estimating model performance.spa
dc.description.sponsorshipThis research was funded by the Ministry of Science, Innovation and Universities (Spain) and the State Investigation Agency, grant number: PID2022-136656NB-100 (LubeMicroAlgae project), and by the Foundation for the Promotion of Applied Scientific Research and Technology in Asturias (Spain), which financed the contract of Guillermo Díez at the University of Oviedo (Spain), grant number: SV-PA-21-AYUD/2021/50987. Guillermo Díez-Valbuena acknowledges the support of the Goverment of the Principality of Asturias under Severo Ochoa predoctoral program (ref. BP22-153).
dc.language.isoengspa
dc.relation.ispartofEnergy, 292spa
dc.rightsCC Reconocimiento – No Comercial – Sin Obra Derivada 4.0 Internacional
dc.rights© 2024 The Author(s).
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleApplication of machine learning techniques to predict biodiesel iodine valuespa
dc.typejournal articlespa
dc.identifier.doi10.1016/J.ENERGY.2024.130638
dc.local.notesOA ATUO24
dc.relation.projectIDPID2022-136656NB-100spa
dc.relation.projectIDSV-PA-21-AYUD/2021/50987
dc.relation.projectIDBP22-153
dc.relation.publisherversionhttps://doi.org/10.1016/j.energy.2024.130638
dc.rights.accessRightsopen access
dc.type.hasVersionVoR


Ficheros en el ítem

untranslated

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

CC Reconocimiento – No Comercial – Sin Obra Derivada 4.0 Internacional
Este ítem está sujeto a una licencia Creative Commons