Mostrar el registro sencillo del ítem

Prediction of the cold flow properties of biodiesel using the FAME distribution and Machine learning techniques

dc.contributor.authorDíez Valbuena, Guillermo 
dc.contributor.authorGarcía Tuero, Alejandro 
dc.contributor.authorDíez Peláez, Jorge 
dc.contributor.authorRodríguez Ordóñez, Eduardo 
dc.contributor.authorHernández Battez, Antolín Esteban 
dc.date.accessioned2024-05-31T09:40:42Z
dc.date.available2024-05-31T09:40:42Z
dc.date.issued2024
dc.identifier.citationJournal of Molecular Liquids, 400 (2024); doi:10.1016/J.MOLLIQ.2024.124555
dc.identifier.issn0167-7322
dc.identifier.urihttps://hdl.handle.net/10651/72595
dc.description.abstractBurning fossil fuels is a significant contributor to global warming due to CO2 emissions. To mitigate these emissions, alternative bio-based fuels, such as biodiesel, have been developed. The cold flow properties of biodiesel, including pour point (PP), cold filter plugging point (CFPP), and cloud point (CP), are crucial. Predicting these properties can aid in selecting bio-oils for biodiesel production. Machine learning techniques were utilized to reveal intricate connections between the content of fatty acid methyl esters (FAME) in biodiesel and its cold flow properties. This study created three machine learning models based on a database of over 200 biodiesel samples to predict the aforementioned cold flow properties. The models' performance was assessed using three standard regression metrics: mean absolute error, mean squared error, and coefficient of determination. The experimental results show that the optimal algorithm for PP, CFPP, and CP has an average error of 4.51 °C, 3.56 °C, and 4.17 °C, respectively. The study also investigated the significance of various biodiesel attributes in making precise predictions, revealing that the distribution of FAME and the number of double bonds in the biodiesel are crucial factors for accurate predictions.spa
dc.language.isoengspa
dc.relation.ispartofJournal of Molecular Liquids, 400spa
dc.rights© 2024 The Author(s).
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titlePrediction of the cold flow properties of biodiesel using the FAME distribution and Machine learning techniquesspa
dc.typejournal articlespa
dc.identifier.doi10.1016/J.MOLLIQ.2024.124555
dc.relation.projectIDPID2022-136656NB-I00spa
dc.relation.publisherversionhttps://doi.org/10.1016/j.molliq.2024.124555
dc.rights.accessRightsopen access
dc.type.hasVersionVoR


Ficheros en el ítem

untranslated

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© 2024 The Author(s).
Este ítem está sujeto a una licencia Creative Commons