RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Integrators of several orders in time to study the evolution of an aerosol by coagulation

Autor(es) y otros:
Fernández Díaz, Julio ManuelAutoridad Uniovi; Rodríguez Braña, María ÁngelesAutoridad Uniovi; Argüelles Díaz, Katia MaríaAutoridad Uniovi; Gómez García, Germán JoséAutoridad Uniovi; García Nieto, Paulino JoséAutoridad Uniovi
Editor/Coord./Trad.:
Fernández Díaz, Julio ManuelAutoridad Uniovi
Palabra(s) clave:

Particle size distribution; Coagulation; Numerical method, Semi-implicit method; Extrapolation

Fecha de publicación:
2003
Versión del editor:
https://doi.org/10.1016/S1352-2310(02)00996-2
Citación:
Atmospheric Environment, 37 (11), p. 1521-1533 (2003); doi:10.1016/S1352-2310(02)00996-2
Descripción física:
p. 1521-1533
Resumen:

We have obtained some numerical methods to integrate the coagulation equation for an aerosol. They are semiimplicit and stable regarding the time integration step, which can be freely chosen (a very important matter in numerical solution of differential equations). The methods are of two types: extrapolative (based on a previously known first-order semi-implicit formula) and purely semi-implicit, both mass-conservative. The same methodology used here to develop these new methods can be applied to improve the well-known sectional ones. The extrapolative and the semi-implicit methods are really of the order we had deduced from their analysis. However, as the order of the method increases, for small time steps, the roundoff causes the error no longer to behave as expected. The extrapolative methods are selfstarting but the semi-implicit ones are not, so we need the first ones to start the others. If we take into account both the error and the CPU time, the second-order methods are comparable, but the third-order semi-implicit one is better than the extrapolative one. The comparison of higher order methods is disturbed by the roundoff error. Both methods can be used with fixed and moving bins with respect to the discretization of the size in the particle size distribution. These methods are valid to complement the specific ones developed to solve the growth and other phenomena in the timesplitting method which is used to analyse the evolution of an aerosol in the general case.

We have obtained some numerical methods to integrate the coagulation equation for an aerosol. They are semiimplicit and stable regarding the time integration step, which can be freely chosen (a very important matter in numerical solution of differential equations). The methods are of two types: extrapolative (based on a previously known first-order semi-implicit formula) and purely semi-implicit, both mass-conservative. The same methodology used here to develop these new methods can be applied to improve the well-known sectional ones. The extrapolative and the semi-implicit methods are really of the order we had deduced from their analysis. However, as the order of the method increases, for small time steps, the roundoff causes the error no longer to behave as expected. The extrapolative methods are selfstarting but the semi-implicit ones are not, so we need the first ones to start the others. If we take into account both the error and the CPU time, the second-order methods are comparable, but the third-order semi-implicit one is better than the extrapolative one. The comparison of higher order methods is disturbed by the roundoff error. Both methods can be used with fixed and moving bins with respect to the discretization of the size in the particle size distribution. These methods are valid to complement the specific ones developed to solve the growth and other phenomena in the timesplitting method which is used to analyse the evolution of an aerosol in the general case.

URI:
https://hdl.handle.net/10651/71996
ISSN:
1352-2310
DOI:
10.1016/S1352-2310(02)00996-2
Patrocinado por:

FICYT Spain

Colecciones
  • Artículos [37546]
Ficheros en el ítem
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image