Show simple item record

Exploring the implementation of LSTM inference on FPGA

dc.contributor.authorGonzález, M. L.
dc.contributor.authorLozada, R.
dc.contributor.authorRuiz, J.
dc.contributor.authorSkibinsky Gitlin, E. S.
dc.contributor.authorGarcía Vico, A. M.
dc.contributor.authorSedano Franco, Javier
dc.contributor.authorVillar Flecha, José Ramón 
dc.date.accessioned2024-02-26T07:39:10Z
dc.date.available2024-02-26T07:39:10Z
dc.date.issued2023
dc.identifier.isbn979-835032297-2
dc.identifier.urihttps://hdl.handle.net/10651/71664
dc.descriptionInternational Conference on Electrical, Computer, Communications and Mechatronics Engineering, ICECCME (2023. Tenerife, Canary Islands)
dc.description.sponsorshipThis work has been founded by: the Ministry of Science and Innovation under CERVERA Excellence Network CER-20211003 (IBERUS), Missions Science and Innovation MIG-20211008 (INMERBOT), CDTI (Centro para el Desarrollo Tecnológico Industrial) under project CER-20211022, ICE (Junta de Castilla y León) under project CCTT3/20/BU/0002, the Spanish Ministry of Economics and Industry under the grant PID2020-112726RB-I00, the Spanish Ministry of
dc.language.isoeng
dc.relation.ispartofInternational Conference on Electrical, Computer, Communications and MechatronicsEengineering, ICECCME 2023
dc.rights© 2023 IEEE
dc.rightsCC Reconocimiento – No Comercial – Sin Obra Derivada 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceScopus
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85174044764&doi=10.1109%2fICECCME57830.2023.10252205&partnerID=40&md5=5444b6dcfd0b910d08e5ea4b0dc0fe8c
dc.titleExploring the implementation of LSTM inference on FPGA
dc.typeconference output
dc.identifier.doi10.1109/ICECCME57830.2023.10252205
dc.relation.projectIDCER-20211003
dc.relation.projectIDMIG-20211008
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-112726RB-I00/ES/INTELIGENCIA COMPUTACIONAL PARA LA MITIGACION DE EMISIONES: NUEVAS METODOLOGIAS DE APRENDIZAJE CON DATOS INCOMPLETOS/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107793GB-I00/ES/HACIA LA EXTRACCION INTELIGENTE, EXPLICABLE Y PRECISA DE CONOCIMIENTO EN PROBLEMAS COMPLEJOS DE CIENCIA DE DATOS/
dc.relation.projectIDTED2021-131983B-I00
dc.relation.projectIDSV-PA-21-AYUD/2021/50994
dc.relation.publisherversionhttp://dx.doi.org/10.1109/ICECCME57830.2023.10252205
dc.rights.accessRightsopen access
dc.type.hasVersionAM


Files in this item

untranslated

This item appears in the following Collection(s)

Show simple item record

© 2023 IEEE
This item is protected with a Creative Commons License