Mostrar el registro sencillo del ítem

Computational models for COVID-19 dynamics prediction

dc.contributor.authorKloczkowski, A.
dc.contributor.authorFernández Martínez, Juan Luis 
dc.contributor.authorFernández Muñiz, María Zulima 
dc.date.accessioned2024-02-26T07:38:39Z
dc.date.available2024-02-26T07:38:39Z
dc.date.issued2023
dc.identifier.isbn978-303142507-3
dc.identifier.issn0302-9743
dc.identifier.urihttps://hdl.handle.net/10651/71585
dc.description22nd International Conference on Artificial Intelligence and Soft Computing, ICAISC (22nd. 2023. Zakopane, Poland)
dc.description.sponsorshipAK acknowledges the financial support from NSF grant DBI 1661391, and NIH grants R01GM127701, and R01HG012117.
dc.format.extentp. 228-238
dc.language.isoeng
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.rights© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
dc.sourceScopus
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85174451484&doi=10.1007%2f978-3-031-42508-0_21&partnerID=40&md5=46f7045ebc66da36831c799bf9ba607f
dc.titleComputational models for COVID-19 dynamics prediction
dc.typeconference output
dc.identifier.doi10.1007/978-3-031-42508-0_21
dc.relation.publisherversionhttp://dx.doi.org/10.1007/978-3-031-42508-0_21


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem