Insights into a 20-ha multi-contaminated brownfield megasite: An environmental forensics approach
Editor/Coord./Trad.:
Subject:
Lead
Arsenic
Brownfield
Pyrite ash
PAHs
Soil
Publication date:
Citación:
Descripción física:
Abstract:
Here we addressed the contamination of soils in an abandoned brownfield located in an industrial area. Detailed soil and waste characterisation guided by historical information about the site revealed pyrite ashes (a residue derived from the roasting of pyrite ores) as the main environmental risk. In fact, the disposal of pyrite ashes and the mixing of these ashes with soils have affected a large area of the site, thereby causing heavy metal(loid) pollution (As and Pb levels reaching several thousands of ppm). A full characterisation of the pyrite ashes was thus performed. In this regard, we determined the bioavailable metal species present and their implications, grain-size distribution, mineralogy, and Pb isotopic signature in order to obtain an accurate conceptual model of the site. We also detected significant concentrations of pyrogenic benzo(a)pyrene and other PAHs, and studied the relation of these compounds with the pyrite ashes. In addition, we examined other waste and spills of minor importance within the study site. The information gathered offered an insight into pollution sources, unravelled evidence from the industrial processes that took place decades ago, and identified the co-occurrence of contaminants by means of multivariate statistics. The environmental forensics study carried out provided greater information than conventional analyses for risk assessment purposes and for the selection of clean-up strategies adapted to future land use.
Here we addressed the contamination of soils in an abandoned brownfield located in an industrial area. Detailed soil and waste characterisation guided by historical information about the site revealed pyrite ashes (a residue derived from the roasting of pyrite ores) as the main environmental risk. In fact, the disposal of pyrite ashes and the mixing of these ashes with soils have affected a large area of the site, thereby causing heavy metal(loid) pollution (As and Pb levels reaching several thousands of ppm). A full characterisation of the pyrite ashes was thus performed. In this regard, we determined the bioavailable metal species present and their implications, grain-size distribution, mineralogy, and Pb isotopic signature in order to obtain an accurate conceptual model of the site. We also detected significant concentrations of pyrogenic benzo(a)pyrene and other PAHs, and studied the relation of these compounds with the pyrite ashes. In addition, we examined other waste and spills of minor importance within the study site. The information gathered offered an insight into pollution sources, unravelled evidence from the industrial processes that took place decades ago, and identified the co-occurrence of contaminants by means of multivariate statistics. The environmental forensics study carried out provided greater information than conventional analyses for risk assessment purposes and for the selection of clean-up strategies adapted to future land use.
Description:
The authors are particularly grateful to Mr. Mario Yáñez (Architect) and to the Servicio de Residuos of the government of the Principality of Asturias for their help with the historical study, and the information provided. We would like also to thank SOGENER SDS S.L. and the Environmental Assay Unit of the Scientific and Technical Services of the University of Oviedo for their technical support.
ISSN:
Patrocinado por:
This research was funded by the European Commission (project LIFE I +DARTS, LIFE11 ENV/ES/000547).
Collections
- Artículos [37323]