RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Mixed-mode instability of a miscible interface due to coupling between Rayleigh-Taylor and double-diffusive convective modes

Autor(es) y otros:
Carballido Landeira, JorgeAutoridad Uniovi; Trevelyan, P.M.J.; Almarcha, C.; De Wit, A.
Palabra(s) clave:

Inestabilidades hidrodinámicas

Dinámica no lineal de sistemas complejos

Autoorganización en sistemas fuera del equilibrio

Fecha de publicación:
2013
Editorial:

AIP Publishing

Versión del editor:
https://doi.org/10.1063/1.4790192
Resumen:

In a gravitational field, a horizontal interface between two miscible fluids can be buoyantly unstable because of double diffusive effects or because of a Rayleigh-Taylor instability arising when a denser fluid lies on top of a less dense one. We show here both experimentally and theoretically that, besides such classical buoyancy-driven instabilities, a new mixed mode dynamics exists when these two instabilities act cooperatively. This is the case when the upper denser solution contains a solute A, which diffuses sufficiently faster than a solute B initially in the lower layer to yield non-monotonic density profiles after contact of the two solutions. We derive analytically the conditions for existence of this mixed mode in the (R, δ) parameter plane, where R is the buoyancy ratio between the two solutions and δ is the ratio of diffusion coefficient of the solutes. We find an excellent agreement of these theoretical predictions with experiments performed in Hele-Shaw cells and with numerical simulations.

In a gravitational field, a horizontal interface between two miscible fluids can be buoyantly unstable because of double diffusive effects or because of a Rayleigh-Taylor instability arising when a denser fluid lies on top of a less dense one. We show here both experimentally and theoretically that, besides such classical buoyancy-driven instabilities, a new mixed mode dynamics exists when these two instabilities act cooperatively. This is the case when the upper denser solution contains a solute A, which diffuses sufficiently faster than a solute B initially in the lower layer to yield non-monotonic density profiles after contact of the two solutions. We derive analytically the conditions for existence of this mixed mode in the (R, δ) parameter plane, where R is the buoyancy ratio between the two solutions and δ is the ratio of diffusion coefficient of the solutes. We find an excellent agreement of these theoretical predictions with experiments performed in Hele-Shaw cells and with numerical simulations.

URI:
https://hdl.handle.net/10651/71109
ISSN:
1089-7666
DOI:
10.1063/1.4790192
Patrocinado por:

A.D. acknowledges Prodex, the “Actions de Recherches Concertées CONVINCE” programme and FRS-FNRS for financial support. J.C.-L. thanks MICINN for funding through research (Project No. FIS2010-21023) and the FPI grant associated to FIS2007-64698.

Colecciones
  • Artículos [37543]
Ficheros en el ítem
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image