RUO Home

Repositorio Institucional de la Universidad de Oviedo

View Item 
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of RUOCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issnAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issn

My Account

LoginRegister

Statistics

View Usage Statistics

RECENTLY ADDED

Last submissions
Repository
How to publish
Resources
FAQs

Analysis of hepcidin, a key peptide for Fe homeostasis, via sulfur detection by capillary liquid chromatography-inductively coupled plasma mass spectrometry

Author:
Konz, TobíasUniovi authority; Montes Bayón, MaríaUniovi authority; Bettmer, JörgUniovi authority; Sanz Medel, AlfredoUniovi authority
Publication date:
2011
Publisher version:
http://dx.doi.org/10.1039/C0JA00053A
Citación:
Journal of Analytical Atomic Spectrometry, 26(2), p. 334-340 (2011); doi:10.1039/C0JA00053A
Descripción física:
p. 334-340
Abstract:

Since its discovery the role of hepcidin as key regulator of iron homeostasis has been stressed by many authors. This peptide hormone of 25 amino acids, out of which 8 are cysteines, holds promise as a novel biomarker in iron metabolism disorders. In this work, we illustrate the progress of a new method for the analysis of hepcidin via sulfur detection using inductively coupled plasma mass spectrometry (ICP-MS) after capillary liquid chromatography for separation of the species. Three different ICP-MS-based strategies have been evaluated to overcome S polyatomic interferences: (1) a collision/reaction cell instrument with Xe as collision gas; (2) the monitoring of SO+ by adding O2 to the reaction cell and (3) a double focusing system (DF-ICP-MS). The latter one provided best limits of detection for S (7 ng mL−1) and good precision and accuracy to monitor S isotope ratios so it was used for hepcidin determination in urine samples by online isotope dilution. Quantitative recoveries of the peptide standard (101.7 ± 1.4%) are obtained with the proposed setup after controlling the column temperature (50 °C) and using the X-skimmer cone. Different sample clean-up procedures were studied in order to apply the developed quantitative methodology to urine samples. Multidimensional (dialysis + solid phase extraction) procedures provided best results yielding a 12-fold preconcentration factor. The obtained extracts were analyzed simultaneously by the developed capLC-ICP-MS setup and also by capLC-ESI-q-TOF for confirmation purposes. The results obtained revealed that ESI-q-TOF detection is more suitable for hepcidin determination in urine samples regarding both selectivity and sensitivity.

Since its discovery the role of hepcidin as key regulator of iron homeostasis has been stressed by many authors. This peptide hormone of 25 amino acids, out of which 8 are cysteines, holds promise as a novel biomarker in iron metabolism disorders. In this work, we illustrate the progress of a new method for the analysis of hepcidin via sulfur detection using inductively coupled plasma mass spectrometry (ICP-MS) after capillary liquid chromatography for separation of the species. Three different ICP-MS-based strategies have been evaluated to overcome S polyatomic interferences: (1) a collision/reaction cell instrument with Xe as collision gas; (2) the monitoring of SO+ by adding O2 to the reaction cell and (3) a double focusing system (DF-ICP-MS). The latter one provided best limits of detection for S (7 ng mL−1) and good precision and accuracy to monitor S isotope ratios so it was used for hepcidin determination in urine samples by online isotope dilution. Quantitative recoveries of the peptide standard (101.7 ± 1.4%) are obtained with the proposed setup after controlling the column temperature (50 °C) and using the X-skimmer cone. Different sample clean-up procedures were studied in order to apply the developed quantitative methodology to urine samples. Multidimensional (dialysis + solid phase extraction) procedures provided best results yielding a 12-fold preconcentration factor. The obtained extracts were analyzed simultaneously by the developed capLC-ICP-MS setup and also by capLC-ESI-q-TOF for confirmation purposes. The results obtained revealed that ESI-q-TOF detection is more suitable for hepcidin determination in urine samples regarding both selectivity and sensitivity.

URI:
http://hdl.handle.net/10651/7108
ISSN:
0267-9477
Identificador local:

20110012

DOI:
10.1039/C0JA00053A
Collections
  • Artículos [37550]
Files in this item
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadata
Show full item record
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
The content of the Repository, unless otherwise specified, is protected with a Creative Commons license: Attribution-Non Commercial-No Derivatives 4.0 Internacional
Creative Commons Image