Mostrar el registro sencillo del ítem
Twist dynamics and Aubry-Mather sets around a periodically perturbed point-vortex
dc.contributor.author | Maró, Stefano | |
dc.contributor.author | Ortega, Victor | |
dc.date.accessioned | 2024-01-22T09:31:06Z | |
dc.date.available | 2024-01-22T09:31:06Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Journal of Differential Equations, 269(4), p. 3624 - 3651 (2020); doi:10.1016/j.jde.2020.03.009 | |
dc.identifier.uri | https://hdl.handle.net/10651/70922 | |
dc.description.abstract | We consider the model of a point-vortex under a periodic perturbation and give sufficient conditions for the existence of generalized quasi-periodic solutions with rotation number. The proof relies on Aubry-Mather theory to obtain the existence of a family of minimal orbits of the Poincaré map associated to the system. | spa |
dc.description.sponsorship | 1Partially supported by the project ‘Geometric and numerical analysis of dynamical systems and applications to mathematical physics’ (MTM2016-76072-P), the ‘Juan de la Cierva-Formación’ Programme (FJCI-2015-24917), and by the project ‘Regular and stochastic behaviour in dynamical systems’, (PRIN 2017S35EHN). | spa |
dc.format.extent | p. 3624 - 3651 | spa |
dc.language.iso | eng | spa |
dc.publisher | Elsevier | spa |
dc.relation.ispartof | Journal of Differential Equations, 269(4) | spa |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights | © Elsevier | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.title | Twist dynamics and Aubry-Mather sets around a periodically perturbed point-vortex | spa |
dc.type | journal article | spa |
dc.identifier.doi | 10.1016/j.jde.2020.03.009 | |
dc.relation.projectID | MTM2016-76072-P | spa |
dc.rights.accessRights | open access | spa |
dc.type.hasVersion | AM | spa |
Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Producción científica no UniOvi [180]
Colección que alberga publicaciones del personal de la Universidad con filiación diferente a la Universidad de Oviedo.