Estimating Forest Variables for Major Commercial Timber Plantations in Northern Spain Using Sentinel-2 and Ancillary Data
Palabra(s) clave:
Estimación de recursos forestales
Métodos automáticos
Sensores remotos pasivos
Fecha de publicación:
Editorial:
MDPI
Versión del editor:
Citación:
Serie:
Prognosis of Forest Production Using Machine Learning Techniques;
Resumen:
In this study, we used Spanish National Forest Inventory (SNFI) data, Sentinel-2 imagery and ancillary data to develop models that estimate forest variables for major commercial timber plantations in northern Spain. We carried out the analysis in two stages. In the first stage, we considered plots with and without sub-meter geolocation, three pre-processing levels for the Sentinel-2 images and two machine learning algorithms. In most cases, geometrically, radiometrically, atmospherically and topographically (L2A-ATC) corrected images and the random forest algorithm provided the best results, with topographic correction producing a greater gain in model accuracy as the average slope of the plots increased. Our results did not show any clear impact of the geolocation accuracy of SNFI plots on results, suggesting that the usual geolocation accuracy of SNFI plots is adequate for developing forest models with data obtained from passive sensors. In the second stage, we used all plots together with L2A-ATC-corrected images to select five different groups of predictor variables in a cumulative process to determine the influence of each group of variables in the final RF model predictions. Yield variables produced the best fits, with R2 ranging from 0.39 to 0.46 (RMSE% ranged from 44.6% to 61.9%). Although the Sentinel-2-based estimates obtained in this research are less precise than those previously obtained with Airborne Laser Scanning (ALS) data for the same species and region, they are unbiased (Bias% was always below 1%). Therefore, accurate estimates for one hectare are expected, as they are obtained by averaging the values of 100 pixels (model resolution of 10 m pixel−1) with an expected error compensation. Moreover, the use of these models will overcome the temporal resolution problem associated with the previous ALS-based models and will enable annual updates of forest timber resource estimates to be obtained.
In this study, we used Spanish National Forest Inventory (SNFI) data, Sentinel-2 imagery and ancillary data to develop models that estimate forest variables for major commercial timber plantations in northern Spain. We carried out the analysis in two stages. In the first stage, we considered plots with and without sub-meter geolocation, three pre-processing levels for the Sentinel-2 images and two machine learning algorithms. In most cases, geometrically, radiometrically, atmospherically and topographically (L2A-ATC) corrected images and the random forest algorithm provided the best results, with topographic correction producing a greater gain in model accuracy as the average slope of the plots increased. Our results did not show any clear impact of the geolocation accuracy of SNFI plots on results, suggesting that the usual geolocation accuracy of SNFI plots is adequate for developing forest models with data obtained from passive sensors. In the second stage, we used all plots together with L2A-ATC-corrected images to select five different groups of predictor variables in a cumulative process to determine the influence of each group of variables in the final RF model predictions. Yield variables produced the best fits, with R2 ranging from 0.39 to 0.46 (RMSE% ranged from 44.6% to 61.9%). Although the Sentinel-2-based estimates obtained in this research are less precise than those previously obtained with Airborne Laser Scanning (ALS) data for the same species and region, they are unbiased (Bias% was always below 1%). Therefore, accurate estimates for one hectare are expected, as they are obtained by averaging the values of 100 pixels (model resolution of 10 m pixel−1) with an expected error compensation. Moreover, the use of these models will overcome the temporal resolution problem associated with the previous ALS-based models and will enable annual updates of forest timber resource estimates to be obtained.
ISSN:
Patrocinado por:
This research was supported by the research project, code PID2020-112839RB-I00, funded by the Spanish State Research Agency (AEI) of the Ministry of Science and Innovation (MCIN/AEI/10.13039/ 501100011033). I.T.-M was in receipt of a Severo Ochoa Fellowship from the Asturias GovernmentFICYT (code BP21-125).
Colecciones
- Artículos [36139]
- Biología de Organismos y Sistemas [701]
- Investigaciones y Documentos OpenAIRE [7870]