RUO Home

Repositorio Institucional de la Universidad de Oviedo

View Item 
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of RUOCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issnAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issn

My Account

LoginRegister

Statistics

View Usage Statistics

RECENTLY ADDED

Last submissions
Repository
How to publish
Resources
FAQs

Expression of cannabinoid CB1R–GPR55 heteromers in neuronal subtypes of the Macaca fascicularis striatum

Author:
Martínez Pinilla, EvaUniovi authority; Rico, Alberto J; Rivas Santisteban, Rafael; Lillo, Jaume; Roda, Elvira; Navarro, Gemma; Franco, Rafael; Laciengo, José L
Subject:

G protein–coupled receptor (GPCR)

Heteromer

Biotinylated dextran amine

Projection neurons

Interneurons

Cannabinoid receptor

CB1

Publication date:
2020
Publisher version:
https://doi.org/10.1111/nyas.14413
Citación:
Annals of the New York Academy of Sciences (2020); doi: 10.1111/nyas.14413
Descripción física:
p. 34-42
Abstract:

The cannabinoid CB1 receptor (CB1R) is the most abundant G protein–coupled receptor in the central nervous system, consistent with the important role of endocannabinoids as neuromodulators. Cannabinoids also modulate the function of G protein–coupled receptor 55 (GPR55), which forms heteroreceptor complexes with the CB1R in the striatum. The aim was to characterize cannabinoid CB1R–GPR55 heteromers (CB1R/GPR55Hets) in the basal ganglia input nuclei of nonhuman primates, Macaca fascicularis, both in projection neurons and interneurons, by the in situ proximity ligation assay. Striatal projecting neurons were identified by the retrograde neuroanatomical tracer, biotinylated dextran amine (BDA), injected into external or internal subdivisions of the globus pallidus. Triple immunofluorescent stains were carried out to visualize (1) BDA-labeled neurons, (2) CB1R/GPR55Hets, and (3) striatal interneurons positive for choline acetyltransferase, parvalbumin, calretinin, or nitric oxide synthase. CB1R/GPR55Hets were identified within both types of projection neurons as well as all interneurons except those that are cholinergic. Moreover, CB1R/GPR55Hets were found specifically in the neuronal cell surface, and also in intracellular membranes. Further research efforts will be needed to confirm the intracellular occurrence of heteromers and their potential as therapeutic targets in diseases related to motor control imbalances, particularly within a parkinsonian context (with or without levodopa-induced dyskinesia).

The cannabinoid CB1 receptor (CB1R) is the most abundant G protein–coupled receptor in the central nervous system, consistent with the important role of endocannabinoids as neuromodulators. Cannabinoids also modulate the function of G protein–coupled receptor 55 (GPR55), which forms heteroreceptor complexes with the CB1R in the striatum. The aim was to characterize cannabinoid CB1R–GPR55 heteromers (CB1R/GPR55Hets) in the basal ganglia input nuclei of nonhuman primates, Macaca fascicularis, both in projection neurons and interneurons, by the in situ proximity ligation assay. Striatal projecting neurons were identified by the retrograde neuroanatomical tracer, biotinylated dextran amine (BDA), injected into external or internal subdivisions of the globus pallidus. Triple immunofluorescent stains were carried out to visualize (1) BDA-labeled neurons, (2) CB1R/GPR55Hets, and (3) striatal interneurons positive for choline acetyltransferase, parvalbumin, calretinin, or nitric oxide synthase. CB1R/GPR55Hets were identified within both types of projection neurons as well as all interneurons except those that are cholinergic. Moreover, CB1R/GPR55Hets were found specifically in the neuronal cell surface, and also in intracellular membranes. Further research efforts will be needed to confirm the intracellular occurrence of heteromers and their potential as therapeutic targets in diseases related to motor control imbalances, particularly within a parkinsonian context (with or without levodopa-induced dyskinesia).

URI:
https://hdl.handle.net/10651/70908
ISSN:
1749-6632
DOI:
10.1111/nyas.14413
Collections
  • Artículos [37540]
Files in this item
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadata
Show full item record
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
The content of the Repository, unless otherwise specified, is protected with a Creative Commons license: Attribution-Non Commercial-No Derivatives 4.0 Internacional
Creative Commons Image