Mostrar el registro sencillo del ítem
Closed-form expressions for derivatives of Bessel functions with respect to the order
dc.contributor.author | González-Santander Martínez, Juan Luis | |
dc.date.accessioned | 2024-01-17T12:22:14Z | |
dc.date.available | 2024-01-17T12:22:14Z | |
dc.date.issued | 2018-10-01 | |
dc.identifier.citation | Journal of Mathematical Analysis and Applications, 466(1), p. 1060-1081 (2018); doi:10.1016/j.jmaa.2018.06.043 | |
dc.identifier.issn | 0022-247X | |
dc.identifier.uri | https://hdl.handle.net/10651/70864 | |
dc.description.abstract | We have used recent integral representations of the derivatives of the Bessel functions with respect to the order to obtain closed-form expressions in terms of generalized hypergeometric functions and Meijer-G functions. Also, we have carried out similar calculations for the derivatives of the modified Bessel functions with respect to the order, obtaining closed-form expressions as well. For this purpose, we have obtained integral representations of the derivatives of the modified Bessel functions with respect to the order. As by-products, we have calculated two non-tabulated integrals. | spa |
dc.format.extent | p. 1060-1081 | spa |
dc.language.iso | eng | spa |
dc.publisher | K. Driver | spa |
dc.relation.ispartof | Journal of Mathematical Analysis and Applications | spa |
dc.rights | © 2018 Elsevier | * |
dc.subject | Bessel functions; Modified Bessel functions; Generalized hypergeometric functions; Meijer-G function | spa |
dc.title | Closed-form expressions for derivatives of Bessel functions with respect to the order | spa |
dc.type | journal article | spa |
dc.identifier.doi | 10.1016/j.jmaa.2018.06.043 | |
dc.relation.publisherversion | https://doi.org/10.1016/j.jmaa.2018.06.043 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Producción científica no UniOvi [58]
Colección que alberga publicaciones del personal de la Universidad con filiación diferente a la Universidad de Oviedo.