RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Investigación
  • Datos de investigación
  • Ver ítem
  •   RUO Principal
  • Investigación
  • Datos de investigación
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Data from "An empirical evaluation of Lex/Yacc and ANTLR parser generation tools"

Autor(es) y otros:
Ortín Soler, FranciscoAutoridad Uniovi; Quiroga Álvarez, JoséAutoridad Uniovi; Rodríguez Prieto, ÓscarAutoridad Uniovi; García Rodríguez, MiguelAutoridad Uniovi
Palabra(s) clave:

Parser generation

Compiler construction

Parser

Lexer

ANTLR

Lex

Yacc

Fecha de publicación:
2021-10-25
Resumen:

Parsers are used in different software development scenarios such as compiler construction, data format processing, machine-level translation, and natural language processing. Due to the widespread usage of parsers, there exist different tools aimed at automizing their generation. Two of the most common parser generation tools are the classic Lex/Yacc and ANTLR. Even though ANTLR provides more advanced features, Lex/Yacc is still the preferred choice in many university courses. There exist different qualitative comparisons of the features provided by both approaches, but no study evaluates empirical features such as language implementor productivity and tool simplicity, intuitiveness, and maintainability. In this article, we present such an empirical study by conducting an experiment with undergraduate students of a Software Engineering degree. Two random groups of students implement the same language using a different parser generator, and we statistically compare their performance with different measures. Under the context of the academic study conducted, ANTLR has shown significant differences for most of the empirical features measured.

Parsers are used in different software development scenarios such as compiler construction, data format processing, machine-level translation, and natural language processing. Due to the widespread usage of parsers, there exist different tools aimed at automizing their generation. Two of the most common parser generation tools are the classic Lex/Yacc and ANTLR. Even though ANTLR provides more advanced features, Lex/Yacc is still the preferred choice in many university courses. There exist different qualitative comparisons of the features provided by both approaches, but no study evaluates empirical features such as language implementor productivity and tool simplicity, intuitiveness, and maintainability. In this article, we present such an empirical study by conducting an experiment with undergraduate students of a Software Engineering degree. Two random groups of students implement the same language using a different parser generator, and we statistically compare their performance with different measures. Under the context of the academic study conducted, ANTLR has shown significant differences for most of the empirical features measured.

Descripción:

Data from the article "F. Ortin, J. Quiroga, O. Rodriguez-Prieto, M. Garcia. An empirical evaluation of Lex/Yacc and ANTLR parser generation tools. PLOS ONE 17(3), pp. 1-16, 2022. https://doi.org/10.1371/journal.pone.0264326"

URI:
https://hdl.handle.net/10651/70833
DOI:
10.17811/ruo_datasets.70833
Enlace a recurso relacionado:
http://hdl.handle.net/10651/65175
Patrocinado por:

This work has been partially funded by the Spanish Department of Science, Innovation, and Universities: project RTI2018-099235-B-I00. The authors have also received funds from the University of Oviedo through its support of official research groups (GR-2011-0040).

Colecciones
  • Datos de investigación [70]
  • Informática [872]
  • Investigaciones y Documentos OpenAIRE [8365]
Ficheros en el ítem
untranslated
Dataset (26.52Kb)
untranslated
Readme (3.128Kb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image