RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Ponencias, Discursos y Conferencias
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Ponencias, Discursos y Conferencias
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Machine learning-based surrogate modelling of reflectarray unit cell in a 4-d parallelotope-shaped domain

Autor(es) y otros:
Rodríguez Prado, DanielAutoridad Uniovi; López Fernández, Jesús AlbertoAutoridad Uniovi; Arrebola Baena, ManuelAutoridad Uniovi
Fecha de publicación:
2023
Versión del editor:
http://dx.doi.org/10.1109/MOCAST57943.2023.10176532
Resumen:

A novel strategy to define a high-dimensionality parallelotope-shaped domain is proposed to train surrogate models of reflectarray unit cells. The concept is based on the definition of a region or rectangle of stability where sharp resonances are avoided as much as possible. A 4-D parallelotope is defined around the rectangle of stability and by controlling its size, it is possible to avoid new resonances that otherwise would appear as a consequence of increasing a rectangular domain dimensionality. This methodology is applied to generate support vector regression based models of a multi-resonant unit cell. Results show a high degree of agreement between the obtained surrogate models and simulations using a tool based on the method of moments with local periodicity that was, in turn, used to generate the training samples. Results also prove that the proposed method performs better than lower dimensionality methods for wideband optimization.

A novel strategy to define a high-dimensionality parallelotope-shaped domain is proposed to train surrogate models of reflectarray unit cells. The concept is based on the definition of a region or rectangle of stability where sharp resonances are avoided as much as possible. A 4-D parallelotope is defined around the rectangle of stability and by controlling its size, it is possible to avoid new resonances that otherwise would appear as a consequence of increasing a rectangular domain dimensionality. This methodology is applied to generate support vector regression based models of a multi-resonant unit cell. Results show a high degree of agreement between the obtained surrogate models and simulations using a tool based on the method of moments with local periodicity that was, in turn, used to generate the training samples. Results also prove that the proposed method performs better than lower dimensionality methods for wideband optimization.

URI:
https://hdl.handle.net/10651/70205
ISBN:
979-835032107-4
DOI:
10.1109/MOCAST57943.2023.10176532
Patrocinado por:

ACKNOWLEDGMENT This work was supported in part by the Ministe-rio de Ciencia, Innovación y Universidades under project IJC2018-035696-I; by MICIN/AEI/10.13039/501100011033 under project PID2020-114172RB-C21 (ENHANCE-5G); by Gobierno del Principado de Asturias under project AYUD/2021/51706.

Colecciones
  • Ingeniería Eléctrica, Electrónica, de Comunicaciones y de Sistemas [1091]
  • Investigaciones y Documentos OpenAIRE [8420]
  • Ponencias, Discursos y Conferencias [4233]
Ficheros en el ítem
Thumbnail
untranslated
Postprint (464.9Kb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image