Mostrar el registro sencillo del ítem

Do all roads lead to Rome? Studying distance measures in the context of machine learning

dc.contributor.authorBlanco Mallo, E.
dc.contributor.authorMorán Fernández, L.
dc.contributor.authorRemeseiro López, Beatriz 
dc.contributor.authorBolón Canedo, V.
dc.date.accessioned2023-10-25T08:55:08Z
dc.date.available2023-10-25T08:55:08Z
dc.date.issued2023
dc.identifier.citationPattern Recognition, 141 (2023); doi:10.1016/j.patcog.2023.109646
dc.identifier.issn0031-3203
dc.identifier.urihttps://hdl.handle.net/10651/69967
dc.description.sponsorshipThis work has been supported by the National Plan for Scientific and Technical Research and Innovation of the Spanish Government (Grant PID2019-109238GB, subprojects C21 and C22), by the Spanish Ministry of Science and Innovation (Grant FPI PRE2020-092608), and by the Xunta de Galicia (Grant ED431C 2022/44) with the European Union ERDF funds. CITIC, as Research Center accredited by Galician University System, is funded by “Consellería de Cultura, Educación e Universidades from Xunta de Gali- cia”, supported in an 80% through ERDF Funds, ERDF Operational Programme Galicia 2014-2020, and the remaining 20% by “Secretaría Xeral de Universidades” (Grant ED431G 2019/01).
dc.language.isoeng
dc.relation.ispartofPattern Recognition
dc.rights© 2023 The Authors.
dc.rightsCC Reconocimiento – No Comercial – Sin Obra Derivada 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceScopus
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85158888609&doi=10.1016%2fj.patcog.2023.109646&partnerID=40&md5=81a1d7417de0477ea7bd7a191d574846
dc.titleDo all roads lead to Rome? Studying distance measures in the context of machine learning
dc.typejournal article
dc.identifier.doi10.1016/j.patcog.2023.109646
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109238GB-C21/ES/SISTEMAS DE RECOMENDACION EXPLICABLES/
dc.relation.projectIDPRE2020-092608
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109238GB-C22/ES/APRENDIZAJE AUTOMATICO ESCALABLE Y EXPLICABLE/
dc.relation.publisherversionhttp://dx.doi.org/10.1016/j.patcog.2023.109646
dc.rights.accessRightsopen access
dc.type.hasVersionVoR


Ficheros en el ítem

untranslated

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© 2023 The Authors.
Este ítem está sujeto a una licencia Creative Commons