RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Conjugated Polymer Microspheres for "Turn-Off"/"Turn-On" Fluorescence Optosensing of Inorganic Ions in Aqueous Media

Autor(es) y otros:
Álvarez Díaz, AdriánAutoridad Uniovi; Salinas Castillo, Alfonso; Camprubi Robles, María; Costa Fernández, José ManuelAutoridad Uniovi; Pereiro García, María RosarioAutoridad Uniovi; Mallavia Marín, Ricardo; Sanz Medel, AlfredoAutoridad Uniovi
Fecha de publicación:
2011
Versión del editor:
http://dx.doi.org/10.1021/ac103268r
Citación:
Analytical Chemistry, 83(7), p. 2712-2718 (2011); doi:10.1021/ac103268r
Descripción física:
p. 2712-2718
Resumen:

The synthesis and characterization of a novel water-compatible microsized material, based on fluorescent conjugated polymers (CPs), and its applicability for optical sensing of inorganic ions of environment interest (copper and cyanide) in water media is here described. Polyfluorene-based fluorescent CPs were synthesized and functionalized with imidazole moieties (selective recognition element) and a terminal double bond (covalently linked to an organic matrix) through a postfunctionalization strategy. Further, microspheres of the novel imidazole-functionalized fluorescent CPs, able to work in water media, were synthesized via a microemulsion and polymerization procedure. The synthesized imidazole-functionalized CP microspheres were then evaluated as fluorescence “turn-Off” sensing materials for Cu2+ detection in aqueous media. Analyte detection was based on the quenching effect of the Cu2+, selectively recognized by the imidazole group, on the polymer fluorescence emission. The developed optosensor exhibits a detection limit of 1 μg/L for the determination of Cu2+ in water with a reproducibility of 4%. The synthesized microsized material was also evaluated for the “turn-on” optosensing of cyanide in water, measuring the recovery of the emission signal from the CP that has been previously deactivated by the presence of quencher species. The “turn-On” optosensor allows the selective determination of free cyanide in aqueous solution with high sensitivity (detection limit of 18 μg/L), obtaining a reproducibility of 2.9%. A high sample throughput (between 7 and 12 samples per hour) was achieved in both cases. Analytical applicability of the fluorescent CP microsphere materials has been successfully demonstrated by tap and mineral water analysis.

The synthesis and characterization of a novel water-compatible microsized material, based on fluorescent conjugated polymers (CPs), and its applicability for optical sensing of inorganic ions of environment interest (copper and cyanide) in water media is here described. Polyfluorene-based fluorescent CPs were synthesized and functionalized with imidazole moieties (selective recognition element) and a terminal double bond (covalently linked to an organic matrix) through a postfunctionalization strategy. Further, microspheres of the novel imidazole-functionalized fluorescent CPs, able to work in water media, were synthesized via a microemulsion and polymerization procedure. The synthesized imidazole-functionalized CP microspheres were then evaluated as fluorescence “turn-Off” sensing materials for Cu2+ detection in aqueous media. Analyte detection was based on the quenching effect of the Cu2+, selectively recognized by the imidazole group, on the polymer fluorescence emission. The developed optosensor exhibits a detection limit of 1 μg/L for the determination of Cu2+ in water with a reproducibility of 4%. The synthesized microsized material was also evaluated for the “turn-on” optosensing of cyanide in water, measuring the recovery of the emission signal from the CP that has been previously deactivated by the presence of quencher species. The “turn-On” optosensor allows the selective determination of free cyanide in aqueous solution with high sensitivity (detection limit of 18 μg/L), obtaining a reproducibility of 2.9%. A high sample throughput (between 7 and 12 samples per hour) was achieved in both cases. Analytical applicability of the fluorescent CP microsphere materials has been successfully demonstrated by tap and mineral water analysis.

URI:
http://hdl.handle.net/10651/6946
ISSN:
0003-2700
Identificador local:

20110328

DOI:
10.1021/ac103268r
Colecciones
  • Artículos [37548]
Ficheros en el ítem
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image