Mostrar el registro sencillo del ítem

Innovations in genomics and big data analytics for personalized medicine and health care: a review

dc.contributor.authorHassan, M.
dc.contributor.authorAwan, F. M.
dc.contributor.authorNaz, A.
dc.contributor.authorAndrés Galiana, Enrique Juan de 
dc.contributor.authorÁlvarez Machancoses, Óscar
dc.contributor.authorCernea Corbeanu, Ana 
dc.contributor.authorFernández Brillet, L.
dc.contributor.authorFernández Martínez, Juan Luis 
dc.contributor.authorKloczkowski, A.
dc.date.accessioned2023-02-01T11:50:45Z
dc.date.available2023-02-01T11:50:45Z
dc.date.issued2022
dc.identifier.citationInternational Journal of Molecular Sciences, 23(9) (2022); doi:10.3390/ijms23094645
dc.identifier.issn1661-6596
dc.identifier.urihttp://hdl.handle.net/10651/65979
dc.description.abstractBig data in health care is a fast-growing field and a new paradigm that is transforming case-based studies to large-scale, data-driven research. As big data is dependent on the advancement of new data standards, technology, and relevant research, the future development of big data applications holds foreseeable promise in the modern day health care revolution. Enormously large, rapidly growing collections of biomedical omics-data (genomics, proteomics, transcriptomics, metabolomics, glycomics, etc.) and clinical data create major challenges and opportunities for their analysis and interpretation and open new computational gateways to address these issues. The design of new robust algorithms that are most suitable to properly analyze this big data by taking into account individual variability in genes has enabled the creation of precision (personalized) medicine. We reviewed and highlighted the significance of big data analytics for personalized medicine and health care by focusing mostly on machine learning perspectives on personalized medicine, genomic data models with respect to personalized medicine, the application of data mining algorithms for personalized medicine as well as the challenges we are facing right now in big data analytics.
dc.description.sponsorshipThis research was supported by a NSF grant DBI-1661391, and NIH grants R01GM127701 and R01HG012117. MH acknowledges the Ohio State University for providing the “President’s Postdoctoral Scholars Program (PPSP)” award.
dc.language.isoeng
dc.relation.ispartofInternational Journal of Molecular Sciences
dc.rights© 2022 by the authors.Licensee MDPI, Basel, Switzerland.
dc.rightsCC Reconocimiento 4.0 Internacional
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceScopus
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85128703621&doi=10.3390%2fijms23094645&partnerID=40&md5=a029c9133c09f30ab701f250168f9d79
dc.titleInnovations in genomics and big data analytics for personalized medicine and health care: a review
dc.typejournal article
dc.identifier.doi10.3390/ijms23094645
dc.relation.publisherversionhttp://dx.doi.org/10.3390/ijms23094645
dc.rights.accessRightsopen access
dc.type.hasVersionVoR


Ficheros en el ítem

untranslated

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© 2022 by the authors.Licensee MDPI, Basel, Switzerland.
Este ítem está sujeto a una licencia Creative Commons