Mostrar el registro sencillo del ítem

Reflectarray antenna direct optimization using surrogate models with several geometrical degrees of freedom per polarization

dc.contributor.authorRodriguez Prado, Daniel
dc.contributor.authorLópez Fernández, Jesús Alberto 
dc.contributor.authorArrebola Baena, Manuel 
dc.date.accessioned2022-12-09T10:52:02Z
dc.date.available2022-12-09T10:52:02Z
dc.date.issued2022-07
dc.identifier.urihttp://hdl.handle.net/10651/65721
dc.descriptionIEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization, NEMO 2022 (2022. Limoges, France)
dc.description.abstractIn this work, surrogate models based on support vector regression (SVR) of a multi-resonant unit cell with several degrees of freedom (DoF) per polarization are trained and used in a reflectarray antenna design and optimization. Since the unit cell has multiple sharp resonances when considering several DoF, the training process is carried out in a hyper-rectangle around a plane of stability. Results of SVR models with four geometrical DoF are shown to provide highly accurate results for the design and analysis of a very large contoured-beam reflectarray for space applications. The direct optimization layout with the surrogate models allows to improve the cross-polarization figures of merit several dB.spa
dc.description.sponsorshipThis work was supported in part by the Ministerio de Ciencia, Innovación y Universidades under project IJC2018-035696-I; by the Ministerio de Ciencia e Innovación and the Agencia Estatal de Investigación within project ENHANCE-5G (PID2020-114172RB-C21 / AEI / 10.13039/501100011033); by Gobierno del Principado de Asturias under project AYUD/2021/51706.spa
dc.format.extent4 p.spa
dc.language.isoengspa
dc.relation.ispartofIEEE MTT-S International Conference on Electromagnetic and Multiphysics Modeling and Optimization (NEMO)spa
dc.rights© IEEE
dc.rightsCC Reconocimiento – No Comercial – Sin Obra Derivada 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectreflectarray antenna optimizationspa
dc.subjectsurrogate modelspa
dc.subjectsupport vector regression (SVR)spa
dc.subjectcontoured-beam antennaspa
dc.subjectgeneralized intersection approachspa
dc.titleReflectarray antenna direct optimization using surrogate models with several geometrical degrees of freedom per polarizationspa
dc.typeconference outputspa
dc.identifier.doi10.1109/NEMO51452.2022.10038951
dc.relation.projectIDIJC2018-035696-Ispa
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-114172RB-C21/ES/ANTENAS Y TECNICAS PARA CONECTIVIDAD INTELIGENTE EN REDES 5G Y POSTERIORES/spa
dc.relation.projectIDAYUD/2021/51706spa
dc.relation.publisherversionhttp://dx.doi.org/10.1109/NEMO51452.2022.10038951
dc.rights.accessRightsopen access
dc.type.hasVersionAM


Ficheros en el ítem

untranslated

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© IEEE
Este ítem está sujeto a una licencia Creative Commons