Does steric hindrance actually govern the competition between bimolecular substitution and elimination reactions?
Autor(es) y otros:
Fecha de publicación:
Versión del editor:
Citación:
Descripción física:
Resumen:
Bimolecular nucleophilic substitution (S N2) and elimination (E2) reactions are prototypical examples of competing reaction mechanisms, with fundamental implications in modern chemical synthesis. Steric hindrance (SH) is often considered to be one of the dominant factors determining the most favorable reaction out of the S N2 and E2 pathways. However, the picture provided by classical chemical intuition is inevitably grounded on poorly defined bases. In this work, we try to shed light on the aforementioned problem through the analysis and comparison of the evolution of the steric energy (EST ), settled within the IQA scheme and experienced along both reaction mechanisms. For such a purpose, the substitution and elimination reactions of a collection of alkyl bromides (R-Br) with the hydroxide anion (OH−) were studied in the gas phase at the M06-2X/aug-cc-pVDZ level of theory. The results show that, generally, EST recovers the appealing trends already anticipated by chemical intuition and organic chemistry, supporting the role that SH is classically claimed to play in the competition between SN2 and E2 reactions.
Bimolecular nucleophilic substitution (S N2) and elimination (E2) reactions are prototypical examples of competing reaction mechanisms, with fundamental implications in modern chemical synthesis. Steric hindrance (SH) is often considered to be one of the dominant factors determining the most favorable reaction out of the S N2 and E2 pathways. However, the picture provided by classical chemical intuition is inevitably grounded on poorly defined bases. In this work, we try to shed light on the aforementioned problem through the analysis and comparison of the evolution of the steric energy (EST ), settled within the IQA scheme and experienced along both reaction mechanisms. For such a purpose, the substitution and elimination reactions of a collection of alkyl bromides (R-Br) with the hydroxide anion (OH−) were studied in the gas phase at the M06-2X/aug-cc-pVDZ level of theory. The results show that, generally, EST recovers the appealing trends already anticipated by chemical intuition and organic chemistry, supporting the role that SH is classically claimed to play in the competition between SN2 and E2 reactions.
ISSN:
Notas Locales:
OA ATUO21
Patrocinado por:
The authors thank the Spanish MICINN for grant PGC2018-095953-B-I00. M.G. especially thanks the Spanish MICIU and MIU for a predoctoral FPU grant (FPU19/02903).
Colecciones
- Artículos [36307]
- Investigaciones y Documentos OpenAIRE [7936]
- Química Física y Analítica [606]