RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Fuzzy compromise programming for portfolio selection

Autor(es) y otros:
Bilbao Terol, Amelia MaríaAutoridad Uniovi; Pérez Gladish, Blanca MaríaAutoridad Uniovi; Arenas Parra, María del MarAutoridad Uniovi; Rodríguez Uría, María VictoriaAutoridad Uniovi
Palabra(s) clave:

Portfolio Selection; Fuzzy Sets; Fuzzy Compromise Programming; Discrepancy Between Fuzzy Numbers

Fecha de publicación:
2006
Versión del editor:
http://dx.doi.org/10.1016/j.amc.2005.04.003
Citación:
Applied Mathematics and Computation, 173(1), P. 251-264 (2006); doi:10.1016/j.amc.2005.04.003
Descripción física:
251-264
Resumen:

The aim of this paper is to solve a portfolio selection problem using Sharpe’s single index model in a soft framework. Estimations of subjective or imprecise future beta for every asset can be represented through fuzzy numbers constructed on the basis of statistical data and the relevant knowledge of the financial analyst; the model, therefore, works with data that contain more information than any classical model and dealing with it does not involve a great extra computational effort. In order to solve the portfolio selection problem we have formulated a Fuzzy Compromise Programming problem. For this task we have introduced the fuzzy ideal solution concept based on soft preference and indifference relationships and on canonical representation of fuzzy numbers by means of their α-cuts. The accuracy between the ideal solution and the objective values is evaluated handling the fuzzy parameters through their expected intervals and using discrepancy between fuzzy numbers in our analysis. A major feature of this model is its sensitivity to the analyst’s opinion as well as to the decision-maker’s preferences. This allows interaction with both when it comes to design the best portfolio.

The aim of this paper is to solve a portfolio selection problem using Sharpe’s single index model in a soft framework. Estimations of subjective or imprecise future beta for every asset can be represented through fuzzy numbers constructed on the basis of statistical data and the relevant knowledge of the financial analyst; the model, therefore, works with data that contain more information than any classical model and dealing with it does not involve a great extra computational effort. In order to solve the portfolio selection problem we have formulated a Fuzzy Compromise Programming problem. For this task we have introduced the fuzzy ideal solution concept based on soft preference and indifference relationships and on canonical representation of fuzzy numbers by means of their α-cuts. The accuracy between the ideal solution and the objective values is evaluated handling the fuzzy parameters through their expected intervals and using discrepancy between fuzzy numbers in our analysis. A major feature of this model is its sensitivity to the analyst’s opinion as well as to the decision-maker’s preferences. This allows interaction with both when it comes to design the best portfolio.

URI:
http://www.sciencedirect.com/science/article/pii/S0096300305003413
http://hdl.handle.net/10651/6025
ISSN:
0096-3003
DOI:
10.1016/j.amc.2005.04.003
Colecciones
  • Artículos [37532]
Ficheros en el ítem
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image