RUO Home

Repositorio Institucional de la Universidad de Oviedo

View Item 
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of RUOCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issnAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issn

My Account

LoginRegister

Statistics

View Usage Statistics

RECENTLY ADDED

Last submissions
Repository
How to publish
Resources
FAQs

Sol-gels doped with polymer-coated ZnS/CdSe quantum dots for the detection of organic vapors

Author:
Hasani, Masoumeh; Coto García, Ana MaríaUniovi authority; Costa Fernández, José ManuelUniovi authority; Sanz Medel, AlfredoUniovi authority
Subject:

Quantum Dots; Fluorescence; Volatile Organic Compounds; Sol–Gels; Multivariate Analysis

Publication date:
2010
Publisher version:
http://dx.doi.org/10.1016/j.snb.2009.10.066
Citación:
Sensors and Actuators B: Chemical, 144(1), p. 198-202 (2010); doi:10.1016/j.snb.2009.10.066
Descripción física:
p. 198-202
Abstract:

A novel luminescent sensing material for the detection and discrimination of different organic vapors has been developed and characterized. For such purpose, colloidal polymer surface-modified ZnS/CdSe semiconductor quantum dots (QDs) were synthesized and trapped into sol–gel inorganic matrices following a simple and friendly procedure. It was observed that the QDs entrapped into the sol–gels maintain invariable optical properties. Moreover, rapid and reversible quenching of the fluorescence from the immobilized QDs upon exposure of the doped sol–gel materials to several organic vapors was observed, with the onset of the quenching process being dependent on the target gas type and on its concentration. After a necessary previous photoactivation, the luminescence of the immobilized quantum dots was found to exhibit a distinct behavior when exposed to different organic vapors at atmospheric pressure. The sensing response from the surface-modified quantum dots was also dependent upon the porous sol–gel matrix composition. Two different active materials were prepared using the same colloidal polymer-coated ZnS/CdSe QDs but changing the composition of the precursors used during the sol–gel preparation and doping process. After exposing the synthesized materials to the different organic analytes gaseous samples, the measured luminescence responses were processed, by multivariate analysis and a dynamic pattern recognition method. Results obtained demonstrated the analytical potential of ZnS/CdSe doped sol–gels as luminescent sensing materials for the rapid detection of organic vapors in contaminated atmospheres.

A novel luminescent sensing material for the detection and discrimination of different organic vapors has been developed and characterized. For such purpose, colloidal polymer surface-modified ZnS/CdSe semiconductor quantum dots (QDs) were synthesized and trapped into sol–gel inorganic matrices following a simple and friendly procedure. It was observed that the QDs entrapped into the sol–gels maintain invariable optical properties. Moreover, rapid and reversible quenching of the fluorescence from the immobilized QDs upon exposure of the doped sol–gel materials to several organic vapors was observed, with the onset of the quenching process being dependent on the target gas type and on its concentration. After a necessary previous photoactivation, the luminescence of the immobilized quantum dots was found to exhibit a distinct behavior when exposed to different organic vapors at atmospheric pressure. The sensing response from the surface-modified quantum dots was also dependent upon the porous sol–gel matrix composition. Two different active materials were prepared using the same colloidal polymer-coated ZnS/CdSe QDs but changing the composition of the precursors used during the sol–gel preparation and doping process. After exposing the synthesized materials to the different organic analytes gaseous samples, the measured luminescence responses were processed, by multivariate analysis and a dynamic pattern recognition method. Results obtained demonstrated the analytical potential of ZnS/CdSe doped sol–gels as luminescent sensing materials for the rapid detection of organic vapors in contaminated atmospheres.

URI:
http://hdl.handle.net/10651/5948
ISSN:
0167-7152
Identificador local:

20100721

DOI:
10.1016/j.snb.2009.10.066
Collections
  • Artículos [32872]
Files in this item
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadata
Show full item record
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
The content of the Repository, unless otherwise specified, is protected with a Creative Commons license: Attribution-Non Commercial-No Derivatives 4.0 Internacional
Creative Commons Image