Mostrar el registro sencillo del ítem
Atmospheric Tomography Using Convolutional Neural Networks
dc.contributor.author | González Gutiérrez, Carlos | |
dc.contributor.author | Beltramo Martin, O. | |
dc.contributor.author | Osborn, J. | |
dc.contributor.author | Calvo Rolle, José Luis | |
dc.contributor.author | Cos Juez, Francisco Javier de | |
dc.date.accessioned | 2021-06-01T09:41:13Z | |
dc.date.available | 2021-06-01T09:41:13Z | |
dc.date.issued | 2020 | |
dc.identifier.isbn | 9783030623647 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.uri | http://hdl.handle.net/10651/58654 | |
dc.description | International Conference Intelligent Data Engineering and Automated Learning – IDEAL (21st. 2020. Guimaraes, Portugal) | |
dc.description.sponsorship | The authors acknowledge Spanish ministry projects MINECO AYA2017-89121- P, and support from the European Union’s Horizon 2020 research and innovation program under the H2020-INFRAIA-2018-2020 grant agreement No 210489629. This work has been partially funded by the French National Research Agency (ANR) program APPLY - ANR-19-CE31-0011. This work also benefited from the support of the WOLF project ANR-18-CE31-0018 of the and the OPTICON H2020 (2017–2020) Work Package 1. James Osborn acknowledges support from the UKRI Future Leaders Fellowship (UK) (MR/S035338/1). | |
dc.format.extent | p. 561-569 | |
dc.language.iso | eng | |
dc.relation.ispartof | Intelligent Data Engineering and Automated Learning – IDEAL 2020. 21st International Conference, Guimaraes, Portugal, November 4–6, 2020, Proceedings, Part II | |
dc.relation.ispartofseries | Lecture Notes in Computer Science; 12490 | |
dc.rights | ©, | |
dc.source | Scopus | |
dc.source.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097146111&doi=10.1007%2f978-3-030-62365-4_54&partnerID=40&md5=ca8122304222dc98b2c0a2116117a727 | |
dc.title | Atmospheric Tomography Using Convolutional Neural Networks | |
dc.type | conference output | spa |
dc.identifier.doi | 10.1007/978-3-030-62365-4_54 | |
dc.relation.projectID | MINECO/AYA2017-89121- P | |
dc.relation.projectID | info:eu‐repo/grantAgreement/EC/H2020/210489629 | |
dc.relation.publisherversion | http://dx.doi.org/10.1007/978-3-030-62365-4_54 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |