RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Tesis
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Tesis
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs
Las tesis leídas en la Universidad de Oviedo se pueden consultar en el Campus de El Milán previa solicitud por correo electrónico: buotesis@uniovi.es

Comparación de dos metodologías en el abordaje de las interacciones gen-ambiente en el cáncer de próstata. Análisis de pathways relacionados con la biogénesis mitocondrial frente a técnicas avanzadas de análisis de datos

Autor(es) y otros:
Sánchez Lasheras, Juan Enrique
Director(es):
Cos Juez, Francisco Javier deAutoridad Uniovi; Martín Sánchez, Vicente
Centro/Departamento/Otros:
Morfología y Biología Celular, Departamento deAutoridad Uniovi
Fecha de publicación:
2020-12-16
Descripción física:
160 p.
Resumen:

En la actualidad, se sabe que existen variantes genéticas que pueden emplearse como predictores de la incidencia y pronóstico del cáncer de próstata. El uso para estos propósitos de los polimorfismos de un solo nucleótido (SNP) es una de las áreas de investigación más prometedoras en la investigación del cáncer. El objetivo de este proyecto de investigación es el desarrollo de metodologías para estudiar la influencia de las variantes genéticas (SNP) con la ayuda de diferentes algoritmos de aprendizaje automático. En esta investigación, se han desarrollado y probado algunas nuevas metodologías de aprendizaje automático con datos obtenidos de la base de datos de MCC-Spain seleccionando casos y controles como un grupo heterogéneo.

En la actualidad, se sabe que existen variantes genéticas que pueden emplearse como predictores de la incidencia y pronóstico del cáncer de próstata. El uso para estos propósitos de los polimorfismos de un solo nucleótido (SNP) es una de las áreas de investigación más prometedoras en la investigación del cáncer. El objetivo de este proyecto de investigación es el desarrollo de metodologías para estudiar la influencia de las variantes genéticas (SNP) con la ayuda de diferentes algoritmos de aprendizaje automático. En esta investigación, se han desarrollado y probado algunas nuevas metodologías de aprendizaje automático con datos obtenidos de la base de datos de MCC-Spain seleccionando casos y controles como un grupo heterogéneo.

Descripción:

Tesis doctoral por compendio de publicaciones.

URI:
http://hdl.handle.net/10651/58257
Notas Locales:

DT(SE) 2020-175

Colecciones
  • Tesis [7669]
Ficheros en el ítem
Thumbnail
untranslated
TD_JuanEnriqueSanchezLasheras.pdf (5.130Mb)
Embargado hasta:2030-12-16
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image