RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Improving recommender systems by encoding items and user profiles considering the order in their consumption history

Autor(es) y otros:
Pérez Núñez, PabloAutoridad Uniovi; Luaces Rodríguez, ÓscarAutoridad Uniovi; Bahamonde Rionda, AntonioAutoridad Uniovi; Díez Peláez, JorgeAutoridad Uniovi
Palabra(s) clave:

Matrix factorization

Collaborative filtering

Fecha de publicación:
2019
Editorial:

Springer

Versión del editor:
http://dx.doi.org/10.1007/s13748-019-00199-7
Citación:
Progress in Artificial Intelligence 9, 67–75 (2019); doi:10.1007/s13748-019-00199-7
Resumen:

The aim of Recommender Systems is to suggest items (products) to satisfy each user’s particular taste. Representation strategies play a very important role in these systems, as an adequate codification of users and items is expected to ease the induction of a model which synthesizes their tastes and make better recommendations. However, in addition to gathering information about users’ tastes, there is an additional aspect that can be relevant for a proper codification strategy, namely the order in which the user interacted with the items. In this paper, several encoding strategies based on neural networks are analyzed and applied to solve two different recommendation tasks in the context of music playlists. The results show that the order in which the musical pieces were listened to is relevant for the codification of items (songs). We also find that the encoding of user profiles should use a different amount of historical data depending on the learning task to be solved. In other words, we do not always have to use all the available data; sometimes, it is better to discard old information, as tastes change over time

The aim of Recommender Systems is to suggest items (products) to satisfy each user’s particular taste. Representation strategies play a very important role in these systems, as an adequate codification of users and items is expected to ease the induction of a model which synthesizes their tastes and make better recommendations. However, in addition to gathering information about users’ tastes, there is an additional aspect that can be relevant for a proper codification strategy, namely the order in which the user interacted with the items. In this paper, several encoding strategies based on neural networks are analyzed and applied to solve two different recommendation tasks in the context of music playlists. The results show that the order in which the musical pieces were listened to is relevant for the codification of items (songs). We also find that the encoding of user profiles should use a different amount of historical data depending on the learning task to be solved. In other words, we do not always have to use all the available data; sometimes, it is better to discard old information, as tastes change over time

URI:
http://hdl.handle.net/10651/53111
ISSN:
2192-6352
DOI:
10.1007/s13748-019-00199-7
Patrocinado por:

This work was funded under Grants TIN2015-65069-C2-2-R from the MINECO (Spanish Ministry of the Economy and Competitiveness) and IDI-2018-000176 from the Principado de Asturias Regional Government, partially supported with ERDF funds

Colecciones
  • Artículos [37541]
  • Informática [875]
  • Investigaciones y Documentos OpenAIRE [8416]
Ficheros en el ítem
Thumbnail
untranslated
Postprint (352.2Kb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image